Основные понятия теории множеств в решении задач по высшей математике

Ларионова Мария Александровна, студентка ЕИ КФУ факультета иностранных языков Научный руководитель: Миронова Юлия Николаевна

<u>Аннотация</u>: в статье рассматриваются основные понятия теории множеств и их применение в решении задач по высшей математике.

1. Понятие множества

Определение 1: Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое.

Определение 2: Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

- $a \in X$ «элемент а принадлежит множеству X»;
- а ∉ X «элемент а не принадлежит множеству X»;
- \forall квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
- \exists квантор существования: \exists у \in В «существует (найдется) элемент у из множества В»;
 - ⇒ символ следствия, означает «влечет за собой»;
 - ⇔ квантор эквивалентности, равносильности «тогда и только тогда»;
 - ∩ конъюнкция, «и»;
 - U дизъюнкция, «или».

Определение 3: Множество, не содержащее ни одного элемента, называют пустым множеством и обозначают символом Ø.

2. Операции над множествами

Пусть А и В – некоторые множества

1) Объединением двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из этих множеств (рис.1)

 $A \cup B = \{x \in U | x \in A$ или $x \in B\}$

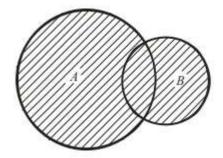


Рис. 1

2) Пересечением множеств A и B называется множество, состоящее их тех и только тех элементов, которые одновременно принадлежат множествам A и B (рис.2) $A \cap B = \{x \in U | x \in A \text{ и } x \in B\}$

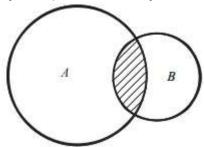


Рис. 2

3) Разностью двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат A и не принадлежат B (рис. 3) $A \setminus B = \{x \in U | x \in A \text{ и } x \notin B\}$

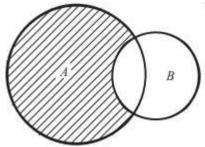


Рис. 3

Пример 1.

Доказать: $A \cap B \subseteq A \subseteq A \cup B$

Доказательство:

- 1) $A \cap B \subseteq A$ $x \in A \cap B \Rightarrow x \in A$ или $x \in B \Rightarrow x \in A \Rightarrow A \cap B \subseteq A$
- 2) $A \subseteq A \cup B$ $x \in A \Rightarrow x \in A$ или $x \in B \Rightarrow x \in A \cup B \Rightarrow A \subseteq A \cup B$ $A \cap B \subseteq A \subseteq A \cup B$

Пример 2.

Дано: *А*{1,2,3,4,5}, В{5,6,7,9}, С{2,4,6,8}, D{7,9,11}.

Найти: $A \cup B$, $A \cap B$, $A \setminus B$, $B \cup C$, $B \cap C$, $B \setminus C$, $C \cup D$, $B \setminus C$, $C \cap D$, $A \cup (B \cup C)$, $A \cap (B \cup C)$ Решение:

- 1) так как $A \cup B = \{x \in U | x \in A \text{ или } x \in B\}$, то $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 9\}$;
- 2) так как $A \cap B = \{x \in U | x \in A \text{ и } x \in B\}$, то $A \cap B = \{5\}$;
- 3) так как $A \setminus B = \{x \in U | x \in A \text{ и } x \notin B\}$, то $A \setminus B = \{1, 2, 3, 4\}$; аналогично
- 4) $B \cup C = \{2, 4, 5, 6, 7, 8, 9\};$
- 5) $B \cap C = \{6\};$
- 6) $B \setminus C = \{5, 7, 9\};$
- 7) $C \cup D = \{2, 4, 6, 7, 8, 9, 11\};$
- 8) $C \cap D = \emptyset$;
- 9) $C \setminus D = \{2, 4, 6, 8\};$
- 10) Из пункта 4) $B \cup C = \{2, 4, 5, 6, 7, 8, 9\} \Rightarrow A \cup (B \cup C) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\};$
- 11) Из пункта 4) $B \cup C = \{2, 4, 5, 6, 7, 8, 9\} \Rightarrow A \cap (B \cup C) = \{2, 4, 5\}.$

Пример 3.

Дано: $C = \{x \in \mathbb{N} \mid x \in 2k, k \in \mathbb{N}\}, D = \{x \in \mathbb{Z} \mid x < 0\}.$

Найти: С ∪ D, $C \setminus D$, $C \cap D$.

Решение:

- 1) так как $C \cup D = \{x \in U | x \in C \text{ или } x \in D\}$, то $C \cup D = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{N} \cup x < 0\}$;
- 2) так как $C \cap D = \{x \in U | x \in C \text{ и } x \in D\}$, то $C \cap D = \emptyset$;
- 3) так как $A \setminus B = \{x \in U | x \in A \text{ и } x \notin B\}$, то $C \setminus D = \{x \in \mathbb{N} \mid x = 2k, k \in \mathbb{N}\}$.

Литература

- 1) Волков, В. А. Элементы теории множеств и развитие понятия числа [Текст]: Учеб. пособие. Ленинград: Изд-во ЛГУ, 1978. 83 с.
- 2) Аминова А.В. Элементы теории множеств/ ред. Кондратьева И.Д. Казань: Изд-во КФУ, 2008. 46 с.
- 3) Лавров И.А. Задачи по теории множеств, математической логике и теории алгоритмов. М. «Наука», Главная редакция физикоматематической литературы/ Лавров И.А., Максимова Л.Л. 5-е изд., исправл. М.: Физматлит, 2004. 256 с.