Финитные функции в алгоритмах криптографии

Леонтьев В.Л., Щуренко А.В. Ульяновский государственный университет

В статье впервые предлагается применять ортогональные финитные функции $(O\Phi\Phi)$ [1] в алгоритме криптографии в том случае, в котором $O\Phi\Phi$ не обладают свойством ортогональности. При этом последовательность сеточных наборов $O\Phi\Phi$, утративших свойство ортогональности, по-прежнему является базисом пространстве Соболева, что доказано в соответствующих теоремах [1]. Потеря ОФФ свойства ортогональности придает ОФФ новое свойство – множественность вариантов задания параметра $O\Phi\Phi$, что позволяет создавать дополнительные ключи в криптографическом алгоритме шифрования. Такая идея использования ОФФ, не имеющих свойства ортогональности, в алгоритме криптографии создана Леонтьевым В.Л. Реализация алгоритма криптографии с использованием подобных финитных проведена Щуренко А.В. с участием Леонтьева В.Л., в рамках диссертационной работы Щуренко А.В. Идея введения в алгоритме двух наборов которых шифрование проводится различным *участков* сетки, на принадлежит Щуренко А.В.

В данной статье предлагается алгоритм симметричного шифрования, основанный на применении ортогональных финитных функций (ОФФ). Теория ОФФ-базисов и ее применение в алгоритмах численных методов изложены в [1], [2], [3], [4].

Основная идея предлагаемого алгоритма заключается в аппроксимации многочлена с использованием функций ОФФ-базиса. После представления блока информации в виде многочлена проводится его аппроксимация с помощью ОФФ-базиса в выбранных узлах сетки, затем вычисляются значения ОФФ-аппроксимации с учетом произвольно заданного значения ключа, после чего результат шифрования представляется в виде блока ОФФ-аппроксимации. Зная координаты точек, в которых проводилась аппроксимация, можно восстановить исходный вид многочлена.

Использование алгоритма шифрования на основе ортогональных финитных функций, утративших свойство ортогональности, существенно повышает стойкость шифрования по сравнению с шифром гаммирования.

Все операции проводятся в кольце многочленов степени, не превосходящей n, над кольцом вычетов \mathbb{Z}_N , где n — четное число, равное длине сообщения, а N — простое число. Все элементы \mathbb{Z}_N являются целыми неотрицательными числами. Сообщение длины, большей n, при шифровании следует разбить на блоки длиной n.

Количество функций в используемой части ОФФ-базиса должно быть не меньше n. Для выполнения этого требования на равномерной сетке $x_1 < x_2 < \cdots < x_l$ с целыми неотрицательными x_i и шагом h задается набор $t = (t_1, t_2, \dots, t_n)$, состоящий из n точек $t_i = (x_i, y_i)$, где $\forall i = \overline{1, n}, j = \overline{1, n}$: $i \neq j \rightarrow x_i \neq x_j$, а все x_i $(i = \overline{1, n})$ совпадают с

узлами сетки. При этом все y_i – целые неотрицательные числа от 0 до N-1, но их точные значения вычисляются уже в процессе шифрования. Далее задается соответствующий набор ОФФ $f=(f_1,f_2,...,f_n)$. В нашем случае в качестве примера взяты ОФФ, являющиеся частным случаем [1, с.11]. При использовании равномерной сетки с шагом h каждому узлу сетки x_i ставится в соответствие сеточная функция вида

$$f_{i}(x) = \begin{cases} (x - x_{i-1})/h, & x \in [x_{i-1}, x_{i-1} + h_{1}] \cup [x_{i-1} + h_{2}, x_{i}], \\ -\alpha + 2(\alpha h + h_{1})(x_{i-1} + d_{n} - x)/(h(h_{2} - h_{1})), & x \in [x_{i-1} + h_{1}, x_{i-1} + d_{n}], \\ -\alpha + 2(\alpha h + h_{2})(x - x_{i-1} - d_{n})/(h(h_{2} - h_{1})), & x \in [x_{i-1} + d_{n}, x_{i-1} + h_{2}], \end{cases}$$

$$(x_{i+1} - x)/h, & x \in [x_{i} + h_{2}, x_{i+1}], \qquad (1)$$

$$\beta + 2(\beta h + h_{1} - h)(x - x_{i} - d_{n})/(h(h_{2} - h_{1})), & x \in [x_{i} + h_{1}, x_{i} + d_{n}],$$

$$\beta + 2(\beta h + h_{2} - h)(x_{i} + d_{n} - x)/(h(h_{2} - h_{1})), & x \in [x_{i} + d_{n}, x_{i} + h_{2}],$$

$$0, & x \notin [x_{i-1}, x_{i+1}], \end{cases}$$

где $d_n = (h_1 + h_2)/2$, $h_1 = H_1 h$, $h_2 = H_2 h$ ($0 \le h_1 < h_2 \le h$). H_1, H_2, α, β - некоторые константы, $\alpha > 0$, $\beta > 0$. Каждая f_i представляет собой сумму В-сплайна первой степени с конечным носителем [-1,1] и двух В-сплайнов первой степени, взятых с разными знаками, с более компактными по сравнению с [-1,1] конечными носителями. За счет двух дополнительных В-сплайнов и с помощью выбора значений α, β, h_1, h_2 достигается выполнение условий ортогональности $\forall i \ne j: (f_i, f_j) = 0$. Функции $f_i(x), i = \overline{1,n}$ линейно независимы, а их аппроксимирующие свойства представлены следующей теоремой:

Теорема 1 [1]. Если $u(x) \in W_2^1(\mathbb{R})$ и $H_1 + H_2 = 1$ $(h_1 + h_2 = h)$, а $\alpha = \beta - 1$, то существует функция $u^h = \sum_{i=1}^n \alpha_i f_i \in M_n$ (α_i - некоторые постоянные):

$$||u - u^{h}||_{\mathbb{L}_{2}(\mathbb{R})} \le ch ||u||_{W_{2}^{1}(\mathbb{R})}, \sum_{i=1}^{n} |\alpha_{i}|^{2} \le c_{1} ||u||_{\mathbb{L}_{2}(\mathbb{R})}^{2}, \tag{2}$$

где M_n - линейная оболочка $f_i(x)$, а постоянные c и c_1 не зависят от u и h. W_2^l - функциональное пространство Соболева, $\mathbb{L}_2=W_2^0$.

Основная идея алгоритма состоит в том, чтобы, отказавшись от выполнения условия ортогональности финитных функций

$$4\alpha\beta + \alpha - \beta = 0,$$

подбирать ОФФ, исходя только из условия

$$\alpha = \beta - 1$$
.

При этом числовое значение параметра β может быть любым, что является основой дополнительного шага шифрования исходного сообщения, связанного не только с деталями алгоритма шифрования, но и с дополнительным произвольно задаваемым

ключом β . В общем случае значения параметра β могут быть разными на различных участках выбранной сетки с узлами x_i . Отказ от ортогональности ОФФ значительно расширяет область применения ОФФ, которые, не обладая уже свойством ортогональности, представляют собой особую часть исходного множества ОФФ. Функции (1) при этом, если $h_1 = h_2 = 0$, принимают следующий вид:

$$f_i(x) = \begin{cases} 2\alpha(x_{i-1} - x)/h, & x \in [x_{i-1}, x_{i-1} + h/2], \\ 2(\alpha + 1)(x - x_i)/h + 1, & x \in [x_{i-1} + h/2, x_i], \\ 2(\beta - 1)(x - x_i)/h + 1, & x \in [x_i, x_i + h/2], \\ 2\beta(x_{i+1} - x)/h, & x \in [x_i + h/2, x_{i+1}], \\ 0, & x \notin [x_{i-1}, x_{i+1}]. \end{cases}$$

Пусть A - множество всех открытых текстов, K - множество ключей, а B - множество всех шифртекстов. Алфавитом A является множество неотрицательных целых чисел от 0 до L-1 ($1 < L \le N$), алфавиты K и B - множества неотрицательных целых чисел от 0 до N-1. Запишем исходное сообщение $a \in A$ в векторном виде:

$$a = (a_1, a_2, ..., a_n).$$

Пусть также выбран ключ $k \in K$:

$$k = (k_1, k_2, ..., k_{n/2}),$$

при этом $\forall i=\overline{1,n/2}, j=\overline{1,n/2}: i\neq j\to k_i\neq k_j$. Кроме того, $\forall i=\overline{1,n/2}: k_i=(x_{j_i}+x_{j_i+1})/2$, где x_{j_i} и x_{j_i+1} $(j_i\in\mathbb{Z}_l)$ - узлы сетки, между которыми лежит k_i . Другими словами, каждая компонента ключа k_i является координатой на оси Ox точки, лежащей между двумя соседними узлами сетки x_{j_i} и x_{j_i+1}

Обозначим x' вектор узлов сетки, используемых при аппроксимации многочлена: $x'=(x'_1,x'_2,\dots,x'_n)$. При этом $\forall i=\overline{1,n/2}$: $x'_{2i-1}=x_{j_i},\ x'_{2i}=x_{j_i+1}$. В качестве f возьмем набор $f=(f_1,f_2,\dots,f_n)$, где каждая f_i — ОФФ-функция, соответствующая узлу x'_i . Вектором $b\in B, b=(b_1,b_2,\dots,b_n)$ обозначается шифртекст.

Алгоритм шифрования выглядит следующим образом:

Шаг 1. Вектору a сопоставляется многочлен:

$$a(x) = a_1 + a_2x + a_3x^2 + \dots + a_nx^{n-1}.$$

Шаг 2. Проводится аппроксимация a(x) с помощью функций f в точках x'. При этом значение аппроксимирующей функции F(x) будет являться суммой произведений ОФФ-функций f_i и соответствующих коэффициентов аппроксимации r_i :

$$F(x) = \sum_{i=1}^{n} r_i f_i(x),$$

поскольку $\forall i = \overline{1,n}, \ j = \overline{1,n}$: $f_j(x_i') = \delta_{ij}$, где δ_{ij} – символ Кронекера, и следовательно, коэффициент каждой i -й ОФФ-функции равен значению многочлена в точке с координатой x_i' . Значения этих коэффициентов – неотрицательные целые числа.

Таким образом находятся значения вектора коэффициентов аппроксимации $r = (r_1, r_2, ..., r_n)$, где $\forall i = \overline{1, n}$: $r_i = a(x_i') \ (mod \ N)$.

Шаг 3. Строится вектор $b'=(b'_1,b'_2,...,b'_{n/2})$, где каждый b'_i равен значению аппроксимирующей функции по модулю N в точке с координатами по оси Ox, равными k_i . Иными словами, $\forall i=\overline{1,n/2}$: $b'_i=F(k_i)$. Поскольку k_i лежит между узлами x'_{2i-1} и x'_{2i} , значение аппроксимирующей функции в данной точке равно сумме соответствующих f_{2i-1} и f_{2i} :

$$F(k_i) = r_{2i-1} * f_{2i-1} + r_{2i} * f_{2i}.$$

Поскольку $f_{2i-1}(k_i) = 2(\beta - 1)(k_i - x_i)/h + 1$, а $k_i = x_i + h/2$, получаем

$$f_{2i-1}(k_i) = \frac{2(\beta-1)*h/2}{h} + 1 = \beta.$$

Аналогично, поскольку $f_{2i}(k_i) = 2(\alpha+1)(k_i-x_i)/h + 1$, а $k_i = x_i - h/2$, получаем

$$f_{2i}(k_i) = \frac{2(\alpha+1)*(-h/2)}{h} + 1 = -\alpha.$$

Таким образом, $F(k_i)=\beta r_{2i-1}-\alpha r_{2i}$. Поскольку $\alpha=\beta-1$, получаем $F(k_i)=\beta r_{2i-1}-(\beta-1)r_{2i}=\beta (r_{2i-1}-r_{2i})+r_{2i}$. Соответственно,

$$b'_i = \beta(r_{2i-1} - r_{2i}) + r_{2i} \pmod{N}.$$

Шаг 4. Строится вектор $b'' = (b_1'', b_2'', \dots, b_{n/2}'')$, где $\forall i = \overline{1, n/2}$: $b_i'' = (r_{2i-1} - r_{2i}) \pmod{N}$.

Шаг 5. Строится вектор b, являющийся объединением векторов b' и b'': $b=(b'_1,b'_2,\dots,b'_{n/2},b''_1,b''_2,\dots,b''_{n/2})$. Вектор b является шифртекстом.

Алгоритм расшифрования заключается в нахождении коэффициентов исходного многочлена a(x) на основе вектора шифртекста b, известного ключа k, а также β . Запишем шифртекст $b \in B$ в векторном виде:

$$b = (b_1, b_2, ..., b_n),$$

где n — четное натуральное число. Пусть также известен ключ $k \in K$, использованный при шифровании:

$$k = (k_1, k_2, ..., k_{n/2}),$$

при этом $\forall i=\overline{1,n}, j=\overline{1,n}: i\neq j\to k_i\neq k_j$. Каждый k_i является координатой на оси Ox точки, лежащей между двумя соседними узлами сетки x_{2i-1} и x_{2i} :

 $\forall i = \overline{1, n/2}$: $k_i = (x_{2i-1} + x_{2i})/2$. Вектором $a \in A, a = (a_1, a_2, ..., a_n)$ обозначается исходное сообщение.

Шаг 1. Вектор b разбивается на векторы $b'=(b'_1,b'_2,...,b'_{n/2})$ и $b''=(b''_1,b''_2,...,b''_{n/2})$, где $\forall i=\overline{1,n/2}$: $b'_i=b_i,\quad b''_i=b_{i+n/2}$.

Шаг **2.** Вектору a исходного сообщения при шифровании был сопоставлен многочлен

$$a(x) = a_1 + a_2x + a_3x^2 + \dots + a_nx^{n-1}$$
.

При проведении аппроксимации a(x) с помощью ОФФ-функций f в точках x' получился вектор коэффициентов аппроксимации $r=(r_1,r_2,...,r_n)$, где $\forall i=\overline{1,n}$: $r_i=a(x_i)\ (mod\ N)$. Для нахождения значений $r_i\ (i=\overline{1,n})$ при расшифровании по значениям b_i' используются известные формулы

$$b'_{i} = (\beta(r_{2i-1} - r_{2i}) + r_{2i}) \pmod{N}, \qquad b''_{i} = (r_{2i-1} - r_{2i}) \pmod{N},$$

содержащие известный ключ β .

Исключение $(r_{2i-1}-r_{2i})$ в первой формуле дает $b_i'=(\beta b_i''+r_{2i})\ (mod\ N)$. Поскольку значения β , b_i' и $b_i''\ (i=\overline{1,n/2})$ известны, r_{2i} находятся по формуле

$$r_{2i} = (b_i' - \beta b_i'') \pmod{N}.$$

Подстановка значения r_{2i} в уравнение $b_i^{\prime\prime}=(r_{2i-1}-r_{2i})\ (mod\ N)$ дает значение r_{2i-1} :

$$r_{2i-1} = (b_i^{"} + r_{2i}) \pmod{N}.$$

Шаг 4. Вектор коэффициентов аппроксимации r известен, по значениям вектора K определяются все x_i' ($\forall i = \overline{1, n/2}$: $x_{2i-1}' = k_i - h/2$, $x_{2i}' = k_i + h/2$). Следовательно,

можно построить полином a(x), применив сеточные полиномы Лагранжа для набора точек $t = ((x'_1, r_1), (x'_2, r_2), ..., (x'_n, r_n))$. Тогда a(x) будет иметь вид:

$$a(x) = \sum_{i=1}^{n} r_i l_i(x),$$

где

$$l_i(x) = \prod_{j=1, \forall j \neq i}^{n} \frac{x - x'_j}{x'_i - x'_j}$$

есть многочлены Лагранжа, связанные с узлами x_i' сетки.

Шаг 5. По значениям коэффициентов многочлена a(x) строится вектор a, являющийся исходным сообщением.

Пример. Пусть дана равномерная сетка, определяемая значениями h=4, $x_1=0$ и задано значение параметра ОФФ $\beta=3$. При этом ОФФ-функции $f_i(x)$ имеют следующий вид:

$$f_i(x) = \begin{cases} (x_{i-1} - x), & x \in [x_{i-1}, x_{i-1} + 2], \\ 3(x - x_i)/2 + 1, & x \in [x_{i-1} + 2, x_i], \\ (x - x_i) + 1, & x \in [x_i, x_i + 2], \\ 3(x_{i+1} - x)/2, & x \in [x_i + 2, x_{i+1}], \\ 0, & x \notin [x_{i-1}, x_{i+1}]. \end{cases}$$

Пусть также N = 257, L = 256.

<u>Шифрование</u>. Пусть a = (5, 4, 1, 2), k = (2, 10). Тогда вектор координат узлов сетки имеет вид x' = (0, 4, 8, 12).

Шаг 1. Вектору а сопоставляется многочлен:

$$a(x) = 5 + 4x + x^2 + 2x^3.$$

Шаг 2. Проводится аппроксимация a(x) с помощью ОФФ-функций f. В результате получается вектор коэффициентов аппроксимации $r = (r_1, r_2, r_3, r_4)$.

$$r_1 = a(0) \pmod{257} = 5$$

 $r_2 = a(4) \pmod{257} = 165 \pmod{257}$

$$r_3 = a(8) \pmod{257} = 1125 \equiv 97 \pmod{257}$$

 $r_4 = a(12) \pmod{257} = 3653 \equiv 55 \pmod{257}$

Получили вектор r = (5, 165, 97, 55).

Шаг 3. Строится вектор b':

$$b'_1 = 3 * (5 - 165) + 165 \pmod{257} = 456 \equiv 199 \pmod{257}$$

 $b'_2 = 3 * (97 - 55) + 36 \pmod{257} = 181 \pmod{257}$
 $b' = (199, 181).$

Шаг 4. Строится вектор b''.

$$b_1'' = 5 - 165 = 97 \pmod{257}$$

 $b_2'' = 97 - 55 = 42 \pmod{257}$
 $b'' = (97, 42)$.

$$b = (b'_1, b'_2, b''_1, b''_2) = (199, 181, 97, 42).$$

Вектор *b* является шифртекстом.

Расшифрование. Пусть $b = (199, 181, 97, 42), k = (2, 10), x' = (0, 4, 8, 12), \beta = 3.$

UІаг 1. Вектор b разделяется на b' и b''.

$$b' = (199, 181)$$

 $b'' = (97, 42)$

Шаг 2. Все b_i' представляются в виде $b_i' = (\beta(r_{2i-1} - r_{2i}) + r_{2i}) \pmod{N}$, а все b_i'' - в виде $b_i'' = (r_{2i-1} - r_{2i}) \pmod{N}$.

$$199 = 3 * (r_1 - r_2) + r_2 \pmod{257}$$

$$181 = 3 * (r_3 - r_4) + r_4 \pmod{257}$$

$$97 = (r_1 - r_2) \pmod{257}$$

$$42 = (r_3 - r_4) \pmod{257}$$

$$r_{2} = (b'_{1} - \beta b''_{1}) (mod\ 257) = (199 - 3 * 97) (mod\ 257) = 165$$

$$r_{1} = (b''_{1} + r_{2}) (mod\ 257) = (97 + 165) (mod\ 257) = 262 \equiv 5 (mod\ 257)$$

$$r_{4} = (b'_{2} - \beta b''_{2}) (mod\ 257) = (181 - 3 * 42) (mod\ 257) = 55$$

$$r_{3} = (b''_{3} + r_{4}) (mod\ 257) = (42 + 55) (mod\ 257) = 97$$

$$r = (5, 165, 97, 55).$$

Шаг 4. Решается система уравнений вида (3).

$$\begin{cases} a(0) = 5 \pmod{257} \\ a(4) = 165 \pmod{257} \\ a(8) = 97 \pmod{257} \\ a(12) = 55 \pmod{257} \end{cases}$$

В итоге получается многочлен $a(x) = 5 + 4x + x^2 + 2x^3$.

Шаг 5. По значениям коэффициентов a(x) строится вектор a, являющийся исходным сообщением.

$$a = (5, 4, 1, 2)$$

Список литературы

- 1. *Леонтьев В.Л.* Ортогональные финитные функции и численные методы Ульяновск: УлГУ, 2003. 178 с.
- 2. *Леонтьев В.Л.*, *Лукашанец Н.Ч.* Сеточные базисы ортогональных финитных функций // Журнал вычислительной математики и математической физики. 1999. τ . 39, №7. τ . 1158
- 3. *Леонтьев В.Л*. Об ортогональных финитных функциях и о численных методах, связанных с их применением // Обозрение прикладной и промышленной математики. 2002. т.9, №3. с. 497
- 4. *Леонтьев В.Л*. Ортогональные сплайны и вариационно-сеточный метод // Математическое моделирование. 2002. т.14, №3. с. 117