Theoretical determination of fundamental physical constants

© Valery B. Smolensky 2016

The article presents a theoretical method of determination of fundamental physical constants. The results of analytical calculations, including: the fine structure constant, the wave length of Compton, the electron mass, elementary charge, Planck constant, Planck mass, length and time, Planck, Newton's gravitational constant, the lifetime of the neutron.

Keywords: the fine-structure constant, the wave length of Compton, the electron mass, elementary charge, Planck constant, Planck mass length and time, Newton's gravitational constant, the lifetime of the neutron, the baryon asymmetry of the Universe

Notes:

If the parameter has a subscript « $\pi »$ means that this theoretical parameter has a numeric value that can be used instead of the true parameter value.
Used measurement units: length $\mathrm{u}_{\pi l}=1,0[\mathrm{~cm}]$, mass $\mathrm{u}_{\pi m}=1,0[\mathrm{r}]$, time $\mathrm{u}_{\pi t}=1,0[\mathrm{c}]$ and the surface density of mass $\mathrm{u}_{\pi \rho s}=\frac{\mathrm{u}_{\pi m}}{\mathrm{u}_{\pi l}^{2}}$ of the Unitary of system of units.

1. The basic relationships

Let us write the expression

$$
\begin{equation*}
k_{\pi 0}^{n-1} \cdot \lambda_{\pi} \cdot\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{n}=(\sqrt{2} \cdot \pi)^{n} \cdot \lambda_{\pi 0}^{n} \tag{1.1}
\end{equation*}
$$

Where

$$
\begin{equation*}
k_{\pi 0}=\lambda_{\pi} \cdot \alpha_{\pi} \cdot \beta_{\pi} ; \lambda_{\pi 0}^{n}=\pi^{n-1} \cdot k_{\pi 0}^{n} ; \tag{1.2}
\end{equation*}
$$

$\alpha_{\pi}, \beta_{\pi}, \Delta y_{\pi}$ - numeric parameters; $\lambda_{\pi}, k_{\pi 0}, \lambda_{\pi 0}$ - the parameters with dimension of length; $n=1,2,3, \ldots$ - integer from natural number.

It is known [1, p.37] algebraic equation with an unknown x degree n type:

$$
\begin{equation*}
f(x) \equiv a_{0} \cdot x^{n}+a_{1} \cdot x^{n-1}+\cdots+a_{n-1} \cdot x+a_{n}=0 \quad\left(a_{0} \neq 0\right) \tag{1.3}
\end{equation*}
$$

Here n - non-negative integer, $a_{0}, a_{1}, \cdots, a_{n}$-is a real numbers, $f(x)$ - the polynomial [2, p. 7] extent n on one variable x :

$$
\begin{align*}
& f(x)=(1+x)^{n}=1+n \cdot x+\frac{n \cdot(n-1)}{2!} \cdot x^{2}+\frac{n \cdot(n-1) \cdot(n-2)}{3!} \cdot x^{3}+\ldots+\frac{n!}{(n-r)!\cdot r!} \cdot x^{r}+\ldots \tag{1.4}\\
& f(x)=(1-x)^{n}=1-n \cdot x+\frac{n \cdot(n-1)}{2!} \cdot x^{2}-\frac{n \cdot(n-1) \cdot(n-2)}{3!} \cdot x^{3}+\ldots+(-1)^{r} \cdot \frac{n!}{(n-r)!r!} \cdot x^{r}+\ldots \tag{1.5}
\end{align*}
$$

If n - positive integer, the expressions (1.4) and (1.5) consists of a finite number of members.
The algebraic equation of the form (1.3) is called valid if all its coefficients a_{i} - are real numbers. It is known [1, p. 39] that the corresponding equation (1.3) is a valid polynomial $f(x)$ of the form (1.4) and (1.5) for all valid values x can take values. In the article are only valid algebraic equation of the form (1.3). We write (1.1) in the form

$$
\begin{equation*}
\frac{\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{n}}{(\sqrt{2} \cdot \pi)^{n}} \cdot k_{\pi 0}^{n-1} \cdot \lambda_{\pi}=\lambda_{\pi 0}^{n} . \tag{1.6}
\end{equation*}
$$

We denote the left part of equation (1.6) as

$$
\begin{equation*}
\lambda_{\pi S}^{n-1}=\frac{\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{n}}{(\sqrt{2} \cdot \pi)^{n}} \cdot k_{\pi 0}^{n-1} \tag{1.7}
\end{equation*}
$$

then (1.6) can be written:

$$
\begin{equation*}
\lambda_{\pi S}^{n-1} \cdot \lambda_{\pi}=\lambda_{\pi 0}^{n} \tag{1.8}
\end{equation*}
$$

Taking into account (1.2), the expression (1.7) can be written as

$$
\begin{equation*}
\lambda_{\pi S}^{n-1}=\frac{\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{n} \cdot\left(\alpha_{\pi} \cdot \beta_{\pi}\right)^{n-1}}{(\sqrt{2} \cdot \pi)^{n}} \cdot \lambda_{\pi}^{n-1} . \tag{1.9}
\end{equation*}
$$

At the same time, taking into account (1.2) and (1.8) $\lambda_{\pi S}^{n-1}$ can be written in the form

$$
\begin{equation*}
\lambda_{\pi S}^{n-1}=\pi^{n-1} \cdot\left(\alpha_{\pi} \cdot \beta_{\pi}\right)^{n} \cdot \lambda_{\pi}^{n-1} . \tag{1.10}
\end{equation*}
$$

Equating (1.9) and (1.10), we obtain:

$$
\begin{equation*}
(\sqrt{2} \cdot \pi)^{n} \cdot \pi^{n-1} \cdot \alpha_{\pi} \cdot \beta_{\pi}=\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{n} \tag{1.11}
\end{equation*}
$$

It is known [1, p. 38] that a general formula expressing the roots of algebraic equations through the coefficients and containing only a finite number of operations, additions and subtractions, multiplications, divisions and root extractions only exist for equations of degree $n \leq 4$. With this in mind, we write the equation (1.1) for the case $n=3$ in the form of:

$$
\begin{equation*}
k_{\pi 0}^{2} \cdot \lambda_{\pi} \cdot\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3}=(\sqrt{2} \cdot \pi)^{3} \cdot \lambda_{\pi 0}^{3}, \tag{1.12}
\end{equation*}
$$

then $\lambda_{\pi 0}^{n}$ from (1.2) can be written as

$$
\begin{equation*}
\lambda_{\pi 0}^{3}=\pi^{2} \cdot k_{\pi 0}^{3}, \tag{1.13}
\end{equation*}
$$

and (1.6) as

$$
\begin{equation*}
\frac{\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3}}{(\sqrt{2} \cdot \pi)^{3}} \cdot k_{\pi 0}^{2} \cdot \lambda_{\pi}=\lambda_{\pi 0}^{3} . \tag{1.14}
\end{equation*}
$$

Designating the area s_{π} as

$$
\begin{equation*}
s_{\pi}=\frac{\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3}}{(\sqrt{2} \cdot \pi)^{3}} \cdot k_{\pi 0}^{2}, \tag{1.15}
\end{equation*}
$$

we write (1.14), taking into account (1.15), as

$$
\begin{equation*}
s_{\pi} \cdot \lambda_{\pi}=\lambda_{\pi 0}^{3} . \tag{1.16}
\end{equation*}
$$

Taking into account (1.2), (1.15) can be written as

$$
\begin{equation*}
s_{\pi}=\frac{\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3} \cdot\left(\alpha_{\pi} \cdot \beta_{\pi}\right)^{2}}{(\sqrt{2} \cdot \pi)^{3}} \cdot \lambda_{\pi}^{2} . \tag{1.17}
\end{equation*}
$$

At the same time, taking into account (1.2), (1.13) and (1.16), the area s_{π} can be written as

$$
\begin{equation*}
s_{\pi}=\pi^{2} \cdot\left(\alpha_{\pi} \cdot \beta_{\pi}\right)^{3} \cdot \lambda_{\pi}^{2} . \tag{1.18}
\end{equation*}
$$

Let us denote in (1.18) elementary scalar radius $r_{\pi s}$ as

$$
\begin{equation*}
r_{\pi s}=\alpha_{\pi} \cdot \beta_{\pi} . \tag{1.19}
\end{equation*}
$$

scalar the length of a circle $l_{\pi s}$, given (1.19), equal

$$
\begin{equation*}
l_{\pi s}=2 \cdot \pi \cdot \alpha_{\pi} \cdot \beta_{\pi} \tag{1.20}
\end{equation*}
$$

and the scalar square $s_{\pi s}$ is equal to

$$
\begin{equation*}
s_{\pi s}=4 \cdot \pi^{2} \cdot r_{\pi s}^{2}, \tag{1.21}
\end{equation*}
$$

scalar volume $v_{\pi s}$:

$$
\begin{equation*}
v_{\pi s}=\pi^{2} \cdot r_{\pi s}^{3} . \tag{1.22}
\end{equation*}
$$

Equating (1.17) and (1.18), we obtain the equation:

$$
\begin{equation*}
(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2} \cdot \alpha_{\pi} \cdot \beta_{\pi}=\left(1 \pm \Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3} . \tag{1.23}
\end{equation*}
$$

2. Protoparameters

2.1. Scalar parameter of structure of space-time

We write the equation (1.23) in the form

$$
\begin{equation*}
(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2} \cdot \alpha_{\pi 0} \cdot \bar{\beta}_{\pi}=\left(1+\Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3}, \tag{2.1.1}
\end{equation*}
$$

where:

$$
\begin{gather*}
\bar{\beta}_{\pi}=1+\bar{\beta}_{\pi 0} ; \tag{2.1.2}\\
\Delta y_{\pi 0}=\sqrt[4]{2 \cdot \pi} ; \tag{2.1.3}\\
\varphi_{\pi 0}=\frac{\alpha_{\pi 0}}{\bar{\beta}_{\pi 0}},\left(\varphi_{\pi 0}=\sqrt{2} \cdot \pi\right) . \tag{2.1.4}
\end{gather*}
$$

The right part of (2.1.1) is a polynomial (1.4) for the case of $n=3$ [2, p. 8]:

$$
\begin{equation*}
(1+x)^{3}=1+3 \cdot x+3 \cdot x^{2}+x^{3} . \tag{2.1.5}
\end{equation*}
$$

Denoting $x=\Delta y_{\pi 0} \cdot \alpha_{\pi 0}$, we write (2.1.5) as

$$
\begin{equation*}
\left(1+\Delta y_{\pi 0} \cdot \alpha_{\pi 0}\right)^{3}=1+3 \cdot \Delta y_{\pi 0} \cdot \alpha_{\pi 0}+3 \cdot \Delta y_{\pi 0}^{2} \cdot \alpha_{\pi 0}^{2}+\Delta y_{\pi 0}^{3} \cdot \alpha_{\pi 0}^{3} \tag{2.1.6}
\end{equation*}
$$

Equation (2.1.5) is written in general form as [3, p. 304]:

$$
\begin{equation*}
a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0 \quad(a \neq 0) \tag{2.1.7}
\end{equation*}
$$

Using any of the known methods for solving cubic equations (for example, the solution of Cardano [1, p. 43] or search procedure - for example, a method of half division [3, p. 472]) yields the parameter $\alpha_{\pi 0}$ - is the real root of the equation (2.1.1).
We write the equation (1.23) in the form:

$$
\begin{equation*}
(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2} \cdot \alpha_{\pi e} \cdot \beta_{\pi e}=\left(1-\Delta y_{\pi e} \cdot \alpha_{\pi e}\right)^{3}, \tag{2.1.8}
\end{equation*}
$$

in which the parameter β_{π}

$$
\begin{equation*}
\beta_{\pi e}=1+\frac{\bar{\beta}_{\pi 0}}{\bar{\beta}_{\pi}^{3}} \tag{2.1.9}
\end{equation*}
$$

Right hand side of (2.1.8) is a polynomial (1.5) for the case of $n=3$ [2, p. 8]:

$$
\begin{equation*}
(1-x)^{3}=1-3 \cdot x-3 \cdot x^{2}-x^{3} . \tag{2.1.10}
\end{equation*}
$$

Denoting $x=\Delta y_{\pi e} \cdot \alpha_{\pi e}$, we write (2.1.10) in the form

$$
\begin{equation*}
\left(1-\Delta y_{\pi e} \cdot \alpha_{\pi e}\right)^{3}=1-3 \cdot \Delta y_{\pi e} \cdot \alpha_{\pi e}-3 \cdot \Delta y_{\pi e}^{2} \cdot \alpha_{\pi e 0}^{2}-\Delta y_{\pi e}^{3} \cdot \alpha_{\pi e}^{3} \cdot \tag{2.1.11}
\end{equation*}
$$

For finding the coefficient $\Delta y_{\pi e}$ in (2.1.11) we write the quadratic equation

$$
\begin{equation*}
\frac{1}{\varphi_{\pi 0}} \cdot \alpha_{\pi x}^{2}+\alpha_{\pi x}-\bar{\beta}_{\pi}=0 \tag{2.1.12}
\end{equation*}
$$

As is known [1, p. 43] an algebraic equation of the 2 nd degree is written in the form:

$$
\begin{equation*}
a \cdot x^{2}+b \cdot x+c=0 \quad(a \neq 0) \tag{2.1.13}
\end{equation*}
$$

The roots of the equation are determined by the formula:

$$
\begin{equation*}
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a} \tag{2.1.14}
\end{equation*}
$$

Note that

$$
\begin{equation*}
x_{1}+x_{2}=-\frac{b}{a} \text { и } x_{1} \cdot x_{2}=\frac{c}{a} . \tag{2.1.15}
\end{equation*}
$$

The ratio of the roots of equation (2.1.12) we write as:

$$
\begin{equation*}
\Delta_{\pi x}=\frac{\alpha_{\pi \times 2}}{\alpha_{\pi \times 1}} \tag{2.1.16}
\end{equation*}
$$

Find $\Delta y_{\pi e}$ out how

$$
\begin{equation*}
\Delta y_{\pi e}=\frac{\Delta_{\pi x}}{\Delta y_{\pi 0}^{3}} . \tag{2.1.17}
\end{equation*}
$$

Using any of the known methods of solving cubic equations, or a search procedure, we find the parameter
$\alpha_{\pi e}$ - is the real root of the equation (2.1.8).
For determine the scalar parameter of structure of space-time $\mathrm{f}_{\pi s}$ we write the ratio:

$$
\begin{equation*}
\frac{\alpha_{\pi 0} \cdot \bar{\beta}_{\pi}}{\alpha_{\pi e} \cdot \beta_{\pi e}}=\frac{\left(\alpha_{\pi e} \cdot \beta_{\pi e}\right)^{3}}{\left(\alpha_{\pi} \cdot \beta_{\pi}\right)^{3}} . \tag{2.1.18}
\end{equation*}
$$

Write (2.1.18) in the form

$$
\begin{equation*}
\left(\alpha_{\pi} \cdot \beta_{\pi}\right)^{3}=\frac{\alpha_{\pi e}^{4} \cdot \beta_{\pi e}^{4}}{\alpha_{\pi 0} \cdot \bar{\beta}_{\pi}} . \tag{2.1.19}
\end{equation*}
$$

From (2.1.19):

$$
\begin{equation*}
\alpha_{\pi} \cdot \beta_{\pi}=\sqrt[3]{\frac{\left(\alpha_{\pi e} \cdot \beta_{\pi \pi} e^{4}\right.}{\alpha_{\pi 0} \cdot \bar{\beta}_{\pi}}} \tag{2.1.20}
\end{equation*}
$$

Scalar parameter of structure of space-time $\mathrm{f}_{\pi s}$:

$$
\begin{equation*}
\mathrm{f}_{\pi s}=\alpha_{\pi} \cdot \beta_{\pi} . \tag{2.1.21}
\end{equation*}
$$

2.2. Electromagnetic constant

For determine the electromagnetic constant α_{π} let us write the expression:

$$
\begin{equation*}
\frac{[\alpha \cdot \beta]_{\pi}}{\alpha_{\pi 0} \cdot \bar{\beta}_{\pi}}=\frac{\left(\alpha_{\pi e} \cdot \beta_{\pi e}\right)^{3}}{[\alpha \cdot \beta]_{\pi}^{3}} \tag{2.2.1}
\end{equation*}
$$

Let us write the expression (2.2.1) in the form

$$
\begin{equation*}
[\alpha \cdot \beta]_{\pi}^{4}=\left(\alpha_{\pi e} \cdot \beta_{\pi e}\right)^{3} \cdot \alpha_{\pi 0} \cdot \bar{\beta}_{\pi} . \tag{2.2.2}
\end{equation*}
$$

From (2.2.2):

$$
\begin{equation*}
[\alpha \cdot \beta]_{\pi}=\sqrt[4]{\left(\alpha_{\pi e} \cdot \beta_{\pi e}\right)^{3} \cdot \alpha_{\pi 0} \cdot \bar{\beta}_{\pi}} . \tag{2.2.3}
\end{equation*}
$$

We denote the relation (2.2.3) to (2.1.20):

$$
\begin{equation*}
\mathrm{k}_{\pi}^{4}=\frac{[\alpha \cdot \beta]_{\pi}}{\alpha_{\pi} \cdot \beta_{\pi}} . \tag{2.2.4}
\end{equation*}
$$

The ratio k_{π} of (2.2.4):

$$
\begin{equation*}
\mathrm{k}_{\pi}=\sqrt[4]{\frac{[\alpha \cdot \beta]_{\pi}}{\alpha_{\pi} \cdot \beta_{\pi}}} \tag{2.2.5}
\end{equation*}
$$

The electromagnetic constant α_{π} is defined as

$$
\begin{equation*}
\alpha_{\pi}=\frac{\alpha_{\pi e}}{\mathrm{k}_{\pi}} . \tag{2.2.6}
\end{equation*}
$$

3. Fundamental physical constants

From the relation

$$
\begin{equation*}
\frac{\lambda_{\pi}^{3}}{2 \cdot \pi^{2} \cdot \mathrm{f}_{\pi s}^{3} \cdot \lambda_{\pi}^{2}}=2 \cdot \pi \cdot \mathrm{f}_{\pi s} \cdot u_{\pi l} \tag{3.1}
\end{equation*}
$$

find the wavelength of λ_{π}

$$
\begin{equation*}
\lambda_{\pi}=4 \cdot \pi^{3} \cdot \mathrm{f}_{\pi s}^{4} \cdot u_{\pi l} . \tag{3.2}
\end{equation*}
$$

Taking into account (3.2) and the substitution of the fine-structure constant α in the form

$$
\begin{equation*}
\alpha_{\pi t h}=2 \cdot \pi \cdot \alpha_{\pi} \tag{3.3}
\end{equation*}
$$

in the formula for Rydberg constant R_{∞} (represented on the website National Institute of Standards and Technology (NIST) at the address http://physics.nist.gov/cuu/Constants/index.html):

$$
\begin{equation*}
\lambda_{C} / 2 \pi=\frac{\alpha^{2}}{4 \pi \cdot R_{\infty}} \tag{3.4}
\end{equation*}
$$

we define from (3.4) Rydberg constant $R_{\pi 0}$ in the form

$$
\begin{equation*}
R_{\pi 0}=\frac{\alpha_{\pi t h}^{2}}{8 \cdot \pi^{3} \cdot \mathrm{f}_{\pi s}^{4}} \cdot u_{\pi l}^{-1} \tag{3.5}
\end{equation*}
$$

The matching coefficient $k_{\pi R}$ defined as:

$$
\begin{equation*}
k_{\pi R}=\frac{R_{\pi \infty}}{\bar{R}_{\infty}} . \tag{3.6}
\end{equation*}
$$

The wavelength of Compton $\lambda_{\pi \mathrm{C}}$ we find, given (3.6) in the form

$$
\begin{equation*}
\lambda_{\pi \mathrm{C}}=k_{\pi R} \cdot \lambda_{\pi} \tag{3.7}
\end{equation*}
$$

The mass of an electron $m_{\pi \mathrm{e}}$ find, taking into account (1.18) in the form

$$
\begin{equation*}
m_{\pi \mathrm{e}}=\pi^{2} \cdot \mathrm{f}_{\pi s}^{3} \cdot \lambda_{\pi \mathrm{C}}^{2} \cdot \mathrm{u}_{\pi \rho S} \tag{3.8}
\end{equation*}
$$

The elementary charge e_{π} can be found in the form

$$
\begin{equation*}
e_{\pi}= \pm\left(\sqrt{\alpha_{\pi}}\right) \cdot\left(m_{\pi \mathrm{e}} \cdot \lambda_{\pi \mathrm{C}}\right)^{1 / 2} \cdot c \tag{3.9}
\end{equation*}
$$

The Planck mass $m_{\pi \mathrm{P}}$, given (1.21), we find in the form

$$
\begin{equation*}
m_{\pi \mathrm{P}}=k_{\pi R}^{1 / 3} \cdot 4 \cdot \pi^{2} \cdot \mathrm{f}_{\pi s}^{2} \cdot u_{\pi l}^{2} \cdot \mathrm{u}_{\pi \rho S} . \tag{3.10}
\end{equation*}
$$

Find Planck's constant h_{π} in the form

$$
\begin{equation*}
h_{\pi}=m_{\pi \mathrm{c}} \cdot \lambda_{\pi \mathrm{C}} \cdot c . \tag{3.11}
\end{equation*}
$$

Based on the known formula for the Planck mass

$$
\begin{equation*}
m_{\mathrm{p}}=\sqrt{\frac{h \cdot c}{G}} \tag{3.12}
\end{equation*}
$$

and from the equality (3.10) and (3.12):

$$
\begin{equation*}
k_{\pi R}^{1 / 3} \cdot 4 \cdot \pi^{2} \cdot \mathrm{f}_{\pi s}^{2} \cdot u_{\pi l}^{2} \cdot \mathrm{u}_{\pi \rho S}=\sqrt{\frac{h_{\pi} \cdot c}{G_{\pi}}}, \tag{3.13}
\end{equation*}
$$

find from (3.13) gravitational constant Newton G_{π} in the form

$$
\begin{equation*}
G_{\pi}=\frac{h_{\pi} \cdot c}{k_{\pi R}^{2 / 3} \cdot 16 \cdot \pi^{4} \cdot \mathrm{f}_{\pi s}^{4} \cdot u_{\pi l}^{4} \cdot \mathrm{u}_{\pi \rho S}^{2}} . \tag{3.14}
\end{equation*}
$$

From the relation

$$
\begin{equation*}
m_{\pi \mathrm{P}} \cdot l_{\pi \mathrm{P}}=m_{\pi \mathrm{e}} \cdot \lambda_{\pi \mathrm{C}} \tag{3.15}
\end{equation*}
$$

can find the length of the Planck $l_{\pi \mathrm{P}}$ in the form of

$$
\begin{equation*}
l_{\pi \mathrm{P}}=\frac{m_{\pi \mathrm{e}}}{m_{\pi \mathrm{P}}} \cdot \lambda_{\pi \mathrm{C}} \tag{3.16}
\end{equation*}
$$

and the Planck time as

$$
\begin{equation*}
t_{\pi \mathrm{P}}=\frac{l_{\pi \mathrm{P}}}{c} . \tag{3.17}
\end{equation*}
$$

To determine the lifetime of the neutron we write the equation (1.23) in the form

$$
\begin{equation*}
(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2} \cdot \mathrm{f}_{\pi s}=\left(1+\Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3} \quad\left(\Delta y_{\pi}-\text { parametric offset machining }\right) . \tag{3.18}
\end{equation*}
$$

Parameter $\mathrm{f}_{\pi s}$ from (3.18):

$$
\begin{equation*}
\mathrm{f}_{\pi s}=\frac{\left(1+\Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3}}{(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2}} \tag{3.19}
\end{equation*}
$$

The lifetime $\tau_{\pi n \mathrm{~S}}$ of short-lived neutrons $\mathrm{n}_{\pi S}$ determine, taking into account (3.19), as

$$
\begin{equation*}
\tau_{\pi \mathrm{nS}}=\frac{k_{\pi R}^{1 / 3}}{\mathrm{f}_{\pi s}} \cdot u_{\pi t}=\frac{(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2} \cdot k_{\pi R}^{1 / 3}}{\left(1+\Delta y_{\pi} \cdot \alpha_{\pi}\right)^{3}} \cdot u_{\pi t}, \tag{3.20}
\end{equation*}
$$

The lifetime $\tau_{\pi n L}$ of long-lived neutrons determine from (3.20), provided $\Delta y_{\pi} \cdot \alpha_{\pi}=0$, in the form of

$$
\begin{equation*}
\tau_{\pi n L}=(\sqrt{2} \cdot \pi)^{3} \cdot \pi^{2} \cdot k_{\pi R}^{1 / 3} \cdot u_{\pi t} . \tag{3.21}
\end{equation*}
$$

Note that, when presence of the neutron has two life times, the baryon asymmetry of the Universe finds its natural explanation.

The Table presents the results of theoretical calculations of fundamental constants (italics protoconstants).
Table

The name of the parameter	Symbol	The numerical value (SGS)
scalar parameter of structure of space-time	$\mathrm{f}_{\pi s}$	$1.1617129770195969289703 \cdot 10^{-3}$
electromagnetic constant	α_{π}	$1.1614097334008939394882 \cdot 10^{-3}$
fine-structure constant	$\alpha_{\pi t h}$	$7.2973525725198574235458 \cdot 10^{-3}$
Wavelength	λ_{π}	$2.2589414383384214126297 \cdot 10^{-10} \mathrm{sm}$
Rydberg constant	$R_{\pi \mathrm{c}}$	$1.1786793952222052707871 \cdot 10^{5} \mathrm{sm}^{-1}$
the matching coefficient*	$k_{\pi R}$	1.0740916960293
Compton wavelength	$\lambda_{\pi \mathrm{C}}$	$2.4263102407358 \cdot 10^{-10} \mathrm{sm}$
electron mass	$m_{\pi \mathrm{e}}$	$9.1093823253407 \cdot 10^{-28} \mathrm{~g}$
elementary charge	e_{π}	$4.8032043541651 \cdot 10^{-10} \mathrm{~g}^{-1 / 2} \mathrm{sm}^{3 / 2} \mathrm{~s}^{-1}$
Planck constant	h_{π}	$6.6260691546019 \cdot 10^{-27} \mathrm{~g} \mathrm{sm}^{2} \mathrm{~s}^{-1}$
Planck mass	$m_{\pi \mathrm{P}}$	$5.4563791133014 \cdot 10^{-5} \mathrm{~g}$
Planck length	$l_{\pi \mathrm{P}}$	$4.0507060018742 \cdot 10^{-33} \mathrm{sm}^{2}$
Planck time	$t_{\pi \mathrm{P}}$	$1.3511700824289 \cdot 10^{-43} \mathrm{~s}$
Newtonian constant of gravitation	G_{π}	$6.6721775029339 \mathrm{~g}^{-1} \mathrm{sm}^{3} \mathrm{~s}^{-2}$
lifetime neutron $\mathrm{n}_{\pi S}$	$\tau_{\pi \mathrm{S} \mathrm{S}}$	881.552698044 s
lifetime neutron $\mathrm{n}_{\pi L}$	$\tau_{\pi n L}$	886.423939853 s

* - value (CODATA 2010) from the NIST website: $R_{\infty}=1.0973731568539(55) \mathrm{sm}^{-1}$ (SGS), the speed of light in vacuum $c=2.99792458 \cdot 10^{10} \mathrm{sm} \cdot \mathrm{s}^{-1}(\mathrm{SGS})$.

References

1. G. Korn, T. Korn. Mathematical Handbook for scientists and engineers. M., "Nauka", 1974
2. G. B. Dwight. Tables of integrals and other mathematical formula. M., "Nauka", 1977
3. Mathematical encyclopedic dictionary. M., "Soviet encyclopedia", 1988
