Котельников Валерий Ильич, к.т.н., Чупикова Светлана Алексеевна, к.г.н. Тувинский институт комплексного освоения природных ресурсов СО РАН

Расчет гидроэнергетического потенциала рек на территории Тувы с помощью ГИС.

Гидрографическая сеть Тувы относится к верхней части бассейна Енисея и к бассейну Убсу-Нурской бессточной котловины Центральной Азии.

настоящее время сокращение сети метеорологических станций водомерных постов на реках, озерах и водохранилищах привело к невозможности объективных гидрологических сведений. получения Так, на Республики Тыва до 1991 г. существовало 22 пункта наблюдений, на сегодняшний день действует 16 водомерных постов. В связи с этим на первый план выходят косвенные методы определения гидрологической информации. Известно [Калинин 2000; Пьянков 2002], что топографические и тематические карты являются источником ряда важнейших гидрографических характеристик рек и их бассейнов, необходимых для анализа и выявления закономерностей гидрологического режима водных объектов. В то же время в имеющихся изданиях водного кадастра [Гидрологический ежегодник, 1987] приведены далеко не все гидрографические характеристики рек и их бассейнов и не по всем водомерным постам (например, не приведены средние уклоны бассейнов и главного водотока, густота речной сети и т. д.). Это связано с ограниченными возможностями традиционных способов [Калинин и др., 1999] определения гидрографических характеристик водных объектов и их бассейнов.

Основная часть стока малых и средних рек Республики Тува формируется внутри горноскладчатого (обрамления) территории, где гидрометеорологическая изученность территории явно недостаточна. Это затрудняет установление стока с её отдельных частей, стимулируя разработку различных методических приемов и поиск косвенных признаков водоносности рек. Наиболее часто для этого используются закономерности распределения

стока в зависимости от местных природных условий – высоты местности, длины рек, уровня подземных вод и некоторых других факторов.

Развитие малой гидроэнергетики в России было широко развернуто в послевоенные годы (мощностью преимущественно менее 5 мВт). За период 1946 – 1952 гг. было построено около 7000 МГЭС общей мощностью 1500 мВт., которые сыграли большую роль в восстановлении народного хозяйства [Малик, 1997; Бушуев и др., 1998; Фельдман и др., 1989]. Затем интерес к малой энергетике был утрачен, в связи с активным строительством крупных гидроэлектростанций. В настоящее время вопрос использования энергии малых рек возник вновь, особенно он актуален для экономического развития Тувы. К началу 90-х годов из-за отсутствия бюджетных средств было прекращено строительство ЛЭП (линии электропередач) в наиболее отдаленные населенные тревожное положение В связи c ЭТИМ сложилось зоне децентрализованного энергоснабжения, составляющего более чем 40 % территории Тувы, где постоянно проживает около 70 тыс. человек. Основными энергоисточниками в ряде отдалённых населенных пунктов являются ДЭС (дизельные электростанции), работающие на жидком привозном топливе. Все действующие дизельные станции убыточны [Научно-технический центр «Энерготехнология», Межотраслевое научно-техническое объединение «Инсэт» научно-исследовательский Центральный дизельный институт, Постоянное представительство Республики Тыва Северо-Западным ПО регионам России, 1999].

В настоящее время решение вопроса проектирования МГЭС должно строиться на принципиально новых подходах и новых технологиях. Для развития малой гидроэнергетики требуется уточнение гидроэнергетического потенциала рек Тувы. Ниже сделана попытка оценить гидроэнергетический потенциал рек Тувы с использованием разработанной нами ГИС «Гидроэнергетические ресурсы Республики Тува».

В связи с недостаточной обеспеченностью территории республики водомерными постами и межведомственными трудностями использования

существующих данных по гидропостам, исходим из имеющихся и доступных данных, таких как топографические карты масштаба 1:100000 и общегеографическая карта масштаба 1: 1000000.

Для расчёта потенциальной энергии Э реки на участке протяженностью L (км), при падении на нём h (м) и среднем расходе на этом участке Q (м³/с) использовались формулы, приведённые в работе [Безруких, 2002]:

$$N = 9.81 \times Q \times H \tag{1},$$

$$\Theta = N \times T$$
, кВт.ч (2),

где Q — расчетный расход воды, м 3 /с, H — расчетный напор, м; N — мощность, кВт; T — время, часы; ϑ — вырабатываемая энергия, кВт.ч.

Таким образом, для расчета валовых гидроэнергетических ресурсов следует знать значения H и Q .

При выборе энергетических параметров МГЭС, для обеспечения её надёжной и безаварийной эксплуатации, наибольший практический интерес представляет среднемноголетний расход $Q_{_{\mathit{MHE}}}$ и максимальный паводковый расход $Q_{_{\mathit{MHE}}}$. Для определения расчётного расхода $Q_{_{\mathit{MHE}}}$ необходимо иметь значение среднемноголетнего расхода $Q_{_{\mathit{MHE}}}$, позволяющего при выбранном значении напора H подсчитать мощность $N^{^{\mathit{ГЭС}}}$. Правильное решение этой задачи важно для определения экономической эффективности МГЭС.

Оценка валового энергетического потенциала для территории Республики Тува затруднена из-за отсутствия полной гидрологической и гидрометрической информации, о чем упоминалось выше. Поэтому использование геоиформационных технологий и методов математического моделирования являются эффективным инструментом решения задач оценки валового гидроэнергетического потенциала.

Анализ имеющихся наблюдений (1974-2002 гг.) за уровнем воды в различных точках гидрографической сети бассейна реки Енисей (рисунок 1) и фрактальный анализ речных систем Саяно-Тувинского нагорья показывают, что речные системы согласованно реагируют на изменение гидрологической

обстановки, находятся в функциональной зависимости от природных условий и геоморфологических особенностей территории. Это позволяет рассматривать бассейн Большого и Малого Енисея как единый природный объект. На основе цифровой модели этого объекта можно проводить вызывающие интерес вычисления.

На основе созданных цифровых моделей речной сети проводились расчёты расхода воды Q для определения потенциальной мощности водотока в заданной точке речного русла.

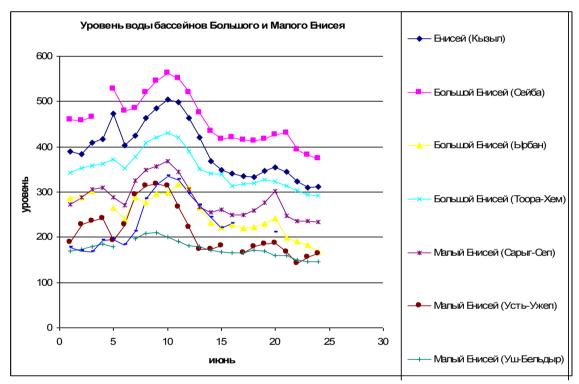


Рисунок 1 – Уровень воды бассейнов Большого и Малого Енисея

Рассматривались зависимости стока рек от некоторых определяющих факторов, количественными показателями которых явились вычисленные гидрографические характеристики. В качестве показателей стока рек выбраны среднемноголетние годовые, максимальные и минимальные (летние и зимние) расходы воды. В результате выявлены зависимости стока от длины главного водотока, площади водосбора, суммарной длины рек в пределах бассейна.

Следует отметить, что аппроксимация поведения суммы длин притоков отмечалась в работе [Синюкович и др., 2000]. Мы использовали зависимости

расход — длина для определения удельного расхода воды, необходимого при вычислении потенциальной мощности водотока в определённых точках речного русла.

Количество рек (притоков) в пределах бассейна определялось для масштабов 1:1000 000 и 1:100000. Анализ вычисленных коэффициентов густоты речной сети показал, что их абсолютные значения находятся в тесной зависимости от масштаба карты, по которой они определяются. Количество рек по картам масштаба 1:100 000 получилось в среднем в 3 раза больше, по сравнению с определенными в масштабе 1:1000000. Это объясняется особенностями картографической генерализации — при уменьшении масштаба уменьшается учитываемая извилистость, а следовательно, длина водотоков и количество их притоков. Значения суммарной длины рек в пределах бассейна также отличаются в среднем в 3 раза, при практически неизменных площадях водосборов.

Расчет всех параметров проведен по топографическим картам масштабов 1:1000000 и 1:100000. Интересные результаты дало сравнение площадей оцифрованных бассейнов рек в пределах водосбора Республики Тува с опубликованными данными [Гидрологический ежегодник, 1984-1987]. В случае, когда площади в среде ГИС определялись по картам масштаба 1:1000000, разница между ними и опубликованными данными в среднем не превышает 2,69 %, при этом максимальное отклонение составило 11,04% (см. таблицу 1.).

Таблица 1 — Соотношение площадей водосбора по данным «Гидрологический ежегодник» [1984—1987гг.] и определённых посредством ГИС.

Река	Площадь водосбора до			Отклонение Гводсб ГИС от		
	устья (F), км ²			Гводосб Гидр. изученности		
	Гидрлог.	Водны	В среде	$F_{\Gamma} - F_{BK}$	$F_{\Gamma} - F_{\Gamma UC}$	$F_{BK} - F_{\Gamma MC}$
	изучен-	й	ГИС	F_{Γ}	$F_{_{arGamma}}$	$\overline{F_{BK}}$
	ность F_{Γ}	кадаст	$F_{{\scriptscriptstyle \Gamma}{\scriptscriptstyle U\!C}}$	%	%	%
		p				[**]
		$F_{{\scriptscriptstyle BK}}$				
Бол. Енисей	15600	15600	15560	0	0,25	0,25
(Тора-Хем)						

Хамсара	4890	4890	4754	0	2,78	2,78
(Хамсара)					,	,
Бол.Енисей		36800	36810			2,7
(Ырбан)						ŕ
Сыстиг-Хем	4430	4430	4337	0	2,1	2,1
Бол.Енисей (Севи)	44600	44600	44550	0	0,11	0,11
Бол.Енисей (Кара-	56500	56500	56560	0	0,11	0,11
Хаак)						
Тапса	1170	1170	1114	0	4,78	4,78
Мал.Енисей	58600		59760		1,94	
Мал.Енисей	20200		17970		11,04	
(сев. Аржан)						
Мал.Енисей	42300	42300	42000	0	0,71	0,71
(Усть-Ужеп)						
Мал.Енисей	53300		54840		2,88	
(Сарыг-Сеп)						
Бурен (Бурен-	5980	5980	5709	0	4,53	4,53
Аксы)						
Хемчик	25500		25680		0,71	
Эрзин (Эрзин)	4240		4242		0,047	
Мизим (Сизим)	867	867	843,4	0	2,72	2,72
Шагонар	456	456	481.9	0	5,68	5,68
(Арыскан)						
			Среднее отклонение		2,69	
			Максимальное отклонение			11,04
			Минима	льное отк.	лонение	0,047

Выявленные закономерности формирования стока рек являются весьма показательными и, безусловно, найдут применение для изучения и оценки водных ресурсов, а также для определения режимной гидрологической информации наряду с известными расчетными методами.

Рассмотрим связь длины реки с интересующим нас параметром – расходом воды, необходимым для определения потенциальной мощности водотока.

Для этого по электронной карте определяем длину всей реки и ее притоков и рассчитываем удельный расход для всего бассейна — путем деления известного расхода в самой нижней точке реки на сумму длин всех притоков данной реки на интересующем нас водотоке. Удельный расход используется для расчета реальных расходов воды и энергетической мощности водотоков:

$$Q_{pac} = 0.0391 \sum L_{np} -$$
 для Большого Енисея (3)

$$Q_{pac} = 0.0253 \sum L_{np} -$$
 для Малого Енисея; (4)

 $Q_{\scriptscriptstyle pac}$ — рассчитанный расход воды;

 $\sum L_{np}$ — суммарная длина вышерасположенных притоков.

Используя формулы (3, 4), произведены расчеты N и Q для рек, входящих в речные бассейны Большого и Малого Енисея. Вычисленные значения (Q) — расхода воды по предлагаемой методике сравнивались с имеющимися данными "Государственного Водного кадастра" (таблица 2).

Таблица 2 — Сравнительная характеристика расхода воды по данным ГИС и Государственного водного кадастра

Речной бассейн	$Q_{\scriptscriptstyle pac}$ — Q — расход воды п		$rac{Q-Q_{_{pac}}}{Q}\%$
	рассчитанный	данным "Государств.	——————————————————————————————————————
	расход воды, m^3/c	Водного кадастра",	٧
	I	M^3/c .	
Бурен	29,59	32,0	7,53
Мизим (пос.	4,6	5,37	14,33
Сизим)			
Ужеп	5,49	8,25	33,45
Каргы	17,99	23,6	23,77
Бол. Енисей (пос.	158,27	176	10,07
Тора-Хем)			
Систиг-Хем (пос	35,43	60,3	41,24
Тозан)			
Уюк (пос Чкаловка)	16,94	11,47	47,68
Хамсара (пос	58, 72	89,2	34,17
Хамсара)			
Тапса (с Кара-Хак)	10,37	19,53	46,9
Улуг-Баш	17,19		
Серлиг-Хем	26,70		
Харал	7,41		
О-Хем	11,66		
Эржей	4,05		
Xoop-Oc	8,28		
Ожу	9,36		
Унжей	3,02		
Улуг-Шивей	7,0		
Дерзиг	9,4		
Азас	33,88		

Расчет показал, что значения *N* для малых гидроэлектростанций, проектируемых для строительства на территории республики Тува,

определенные с использованием предлагаемой методики и полученные ранее по стандартным методикам, согласуются (таблица 3).

Предлагаемая методика определения расхода воды *Q* позволяет при ограниченной исходной информации производить интересующие нас вычисления. Это поможет определять перспективные в гидроэнергетическом отношении водотоки при существующей ограниченной гидрологической информации.

Таким образом, применение ГИС-технологий позволяет поднять на новый качественный уровень исследования гидрологических процессов и явлений.

Используя инструментарий геоинформационных систем и ГИС – проект «Гидроэнергетические ресурсы Республики Тува» были впервые рассчитаны некоторые новые показатели и коэффициенты.

Таблица 3 – Рассчитанная с помощью ГИС и предполагаемая мощность проектируемых ГЭС

Проектируемые ГЭС	N_{ycm}	$N_{\it pac}$ мощность,	
	проектируемая	рассчитанная используя	
	мощность (кВт)	ГИС (кВт)	
«Чазылар» на р. Хамсара	165 (3 агр х 55)	332	
На р Чаваш	1728 (8 агр х 216)	224.9	
«Тывинская» на р. Хамсара	1728 (8 агр х 216)	1210.7	
На р. Сыстыг-Хем	110 (2 агр х 55)	192.2	
На р. Сейба	110 (2 агр х 55)	38.3	
На р. Хут	110 (2 агр х 55)	58.3	
На р. Чавач	165 (3 агр х 55)	44.7	
На р. Балыктыг-Хем	440 (8 агр х 55)	69.5	

Использование ГИС для вычисления некоторых гидрологических показателей, согласно исследованиям [Пьянкова и др., 2000; Калинина и др., 2000], играют далеко не последнюю роль в понимании ряда важнейших гидрологических процессов и явлений и позволяют, особенно при отсутствии данных наблюдений, косвенным путем получить важные гидрологические сведения. К их числу следует отнести порядки рек, а также суммарные длины рек и горизонталей в пределах бассейна. Расчет всех параметров проведен по

электронным топографическим картам масштабов 1:1000000 и 1:100000. Выявлены новые закономерности процессов формирования речного стока и сделан шаг в развитии косвенных методов их определения.

Итак, развитие средств вычислительной техники и информационные технологии позволяют создать на их основе цифровую модель интересующего объекта, чтобы представить разнородную информацию в графическом виде для интерпретации и принятия решений.

Водные ресурсы Республики Тува (РТ) включают в себя запасы более 15 тысяч крупных и малых рек, а также грунтовые и подземные воды. Но на сегодняшний день они почти не используются, хотя расширение возможностей их эксплуатации открыло бы дополнительные перспективы для экономического развития и благосостояния населения республики. Речная сеть наиболее развита труднодоступных районах, использование горных И И гидроэнергетического потенциала этих рек, например для строительства малых гидроэлектростанций, позволило бы решить проблему энергоснабжения. Основными энергоисточниками в населённых пунктах Тоора-Хем, Севи, Хут, Мугур-Аксы, Кунгуртук и других являются дизельные электростанции, работающие на все дорожающем жидком дальнепривозном топливе. Развитие малой гидроэнергетики позволяет экономить органическое топливо в районах, наиболее удаленных энергосистем, и может быть приемлемым в экологическом отношении и надёжным источником независимого снабжения электроэнергией отдалённых районов. Однако для более точного определения энергетического потенциала реки и наиболее выгодного месторасположения малых гидроэнергетических устройств необходимо учитывать множество факторов. Но недостаточное количество гидрологических постов наблюдений по рекам, а также отсутствие полной гидрологической и гидрометрической информации затрудняют объективную оценку валового энергетического объектов малой гидроэнергетики. Использование ГИС потенциала обеспечивает комплексное отображение ситуации за счёт графического представления различной информации на географической карте и облегчает её восприятие, что повышает эффективность принятия решений и оценки экологических последствий. Применение методов фрактального анализа для исследования речных систем также позволяет учитывать конкретные свойства каждой речной системы при её моделировании и вычислении количественных характеристик, в частности – расхода воды.

Литература:

Калинин В.Г. Некоторые аспекты применения ГИС-технологий в гидрологии // Метеорология и гидрология. — 2000. -№12. —С.71-78. Пьянков С.В., Калинин В.Г. К вопросу о точности выполнения картометрических работ традиционными способами и с применением ГИС- технологий // Вопросы физической географии и геоэкологии Урала: Межвуз. сб. науч. тр. / Перм. Ун-т. — Пермь, 2000. — С. 50-54.

Ресурсы и эффективность использования возобновляемых источников энергии в России // под общей редакцией П,П, Безруких — Санкт-Петербург «Наука» -2002. -305с.

Никора В.И. Русловые процессы и гидравлика малых рек – Кишинев: «Штиинца», 1992. – С. 26-40.

Ресурсы поверхностных вод СССР том 16 Ангаро-Енисейский район Вып.1 Енисей Л.: Гидрометеоиздат 1973. 240c.

Государственный водный кадастр. Ежегодные данные о режиме и ресурсах поверхностных вод суши 1985 г. / отв. Ред. Н.В. Андриянова, О. В. Ачаковская. – Обнинск. ВНИИГМИ. –МЦД. 1987. Ч. 1, Ч.2. Т.1 Вып. 12. – 414с.

Синюкович В.Н. Характер и природа синхронных колебаний стока рек юга Сибири // География и природные ресурсы. -1999. - №3. –С. 91- 96.

Синюкович В.Н. средний сток рек Байкальской котловины и его определение при недостаточности наблюдений // География и природные ресурсы. -2000. - №4. –С. 60 - 63.

Энергетическая безопасность России / Бушуев В.В., Воропай Н.И., Мастепанов А.М., Шафраник Ю.К. и др. – Новосибирск: Наука. Сибирская издательская фирма ПАН, 1998. -302 с.