Доклад на тему:

«Оптимизация процесса буксования колесного движителя»

Стремление уменьшить буксование за счет изменения параметров устройства противоскольжения способствует росту сил сопротивления движению [2,4]. Очевидно, что процесс носит экстремальный характер. Для нахождения условного экстремума была проведена оптимизация процесса путем совместного решения уравнений регрессии для определения буксования и силы сопротивления движению от устройства. Представляет интерес рассмотреть задачу оптимизации процесса с учетом количественного и качественного параметров.

При допускаемом буксовании $\delta = 15\%$ необходимо найти в факторном пространстве (-1 \leq Xi \leq +1 i=1,2,3,4) минимальное значение силы сопротивления движению движителя с устройством противоскольжения P_{fy} . Задача формулируется следующим образом: найти условный экстремум функции:

$$P_{fy} = 0.56 + 0.4X_2 + 0.05X_3 + 0.10X_4 + 0.34X_5 + 0.05X_2^2 + 0.05X_4^2 - 0.27X_5^2 + 0.08X_2$$

$$X_3 + 0.07X_2 X_4 + 0.07X_3 X_4 + 0.07X_4 X_5$$
(1)

с уравнением связи:

$$2,6 - 2,21X_2 - 2,34X_3 - 2,02X_4 - 4,08X_5 + 1,15X_3^2 - 2,45X_4^2 + 0,45X_5^2 - 0,93X_2X_3 + 0,70X_3X_4 - 054X_4X_5 = 0$$

$$(17,6 - 15 - 2,21X_2 - 2,34X_3 - 2,02X_4 - 4,08X_5 + 1,15X_3^2 - 2,45X_4^2 + 0,45X_5^2 - 0,93X_2X_3 + 0,70X_3X_4 - 054X_4X_5,)$$

$$(2)$$

Решение этой задачи методом неопределенных множителей Лагранжа нецелесообразно из-за сложности уравнения связи (2). Поэтому решим ее следующим образом.

Учитывая, что уравнение связи (2) оказалось линейным относительно параметра X_2 , выразим этот параметр:

$$X_{2} = \frac{1}{2,21 - 0.93X_{3}} \cdot (-2,6 + 2,34X_{3} + 2,02X_{4} + 4,08X_{5} - 1,15X_{3}^{2} + 2,45X_{4}^{2} - 0,45X_{5}^{2} + 0,70X_{3}X_{4} - 0,54X_{4}X_{5}),$$
(3)

Если подставить выражение (3) в функцию (1), то задача нахождения условного экстремума сводится к нахождению экстремума безусловного. Эту задачу решим, протабулировав на программе Math soft MathCAD 13 функцию P_{fy} (1) в узлах сетки на которую разобьем факторное пространство -1 \leq $Xi \leq +1$. Данные в расчетах приведены в таблице 1.

Изменяя последовательно значения переменных X_3 , X_4 , X_5 [3], вычислим из (1) значения X_2 , т.е. точки, в которых значения X_2 выходят из факторного пространства, из дальнейших расчетов исключаются. Изменяя далее с тем же шагом переменную X_3 , будем вычислять значения функции P_{fy} и отбирать минимум. Всего было реализовано 65 опытов.

Результаты опытов 1-3, 18-21 показывают, что при обеспечении заданной степени однородности снижению силы сопротивлению движения колесного движителя оборудованного устройствами противоскольжения способствует уменьшение значений параметров коэффициента объемного смятия почвы K_{τ} . Наибольшая сила сопротивления оказалась в мысленных опытах 38, 39, 40 при конусности стоки устройства противоскольжения соответственно 0,9; 1,2; 1,6 и количества устройств соответственно 2, 2, 3 шт.

Таблица 1. Результаты расчетов мысленных опытов при оптимизации процесса по двум параметрам: буксованию и силе сопротивления движению

$N_{\underline{0}}$	$X_2 \rightarrow C_k$		$X_3 \rightarrow K_{\tau}$		$X_4 \rightarrow h_B$		$X_5 \rightarrow Z_c$		P _{fc} , κH	
мыс-	Кодо-	Нату-	Кодо-	Нату-	Ко-	Нату-	Ко-	Нат	Pac-	Опыт
лен-	вая	раль-	вая	раль-	до-	раль-	довая	урал	четные	ные
ного опыта	вели-	ная	вели-	ная	вая	ная	вели-	ьная	значе-	зна-
Olibita	чина	вели-	чина	вели-	ве-	вели-	чина	ве-	ния	чения
		чина		чина,	ли-	чина, м		ли-		
				H/M^3	чина			чи-		
								на,		
								шт.		
1	2	3	4	5	6	7	8	9	10	11
1	0	1,0	-1,0	6,0	0	0,10	0	2	0,12	0,10
2	0	1,0	-0,8	6,4	0	0,10	0	2	0,11	0,11
3	1,2	0,4	-0,4	7,2	0	0,10	0	2	0,14	0,13
4	-1	0,5	-1	6,0	-1	0,05	1	4	0,96	0,98
5	1,1	0,4	0	8,0	0	0,10	0	2	0,13	0,13
6	-1,2	0,4	0	8,0	-0,7	0,06	0	2	0,09	0,08
7	-1	0,5	1	10	-1	0,05	1	4	0,47	0,32
8	-1,3	0,4	0	8,0	-0,1	0,09	0	2	0,11	0,10
9	-1	0,5	1	10	1	0,15	1	4	0,94	0,78
10	-0,9	0,5	0	8,0	0,2	0,11	0	2	0,12	0,11
11	1	1,5	-1	6,0	-1	0,05	1	4	0,29	0,28
12	-0,4	0,8	0	8,0	0,5	0,13	0	2	0,15	0,14
13	0,3	1,1	0	8,0	0,8	0,14	0	2	0,20	0,19
14	1	1,5	-1	6,0	1	0,15	1	4	0,81	0,77
15	1,2	1,6	0	8,0	1,1	0,16	0	2	0,26	0,25
16	2,0	2,1	0	8,0	1,4	0,17	0	2	0,32	0,31
17	-1	0,5	-1	6,0	1	0,15	1	4	0,64	0,52
18	-0,9	0,5	0	8,0	-1	0,05	0	2	0,12	0,11
19	-0,8	0,6	0,4	8,8	-1	0,05	0	2	0,20	0,19
20	-0,5	0,8	0,8	9,6	-1	0,05	0	2	0,34	0,33
21	0,2	0,9	1	10	-1	0,05	0	2	0,45	0,44
22	0	1,0	1	10	0	0,10	0	2	0,81	0,69
23	0,4	1,2	-1	6,0	1	0,15	0	2	0,80	0,79
24	0,5	1,3	-0,6	6,8	1	0,15	0	2	0,90	0,89
25	1	1,5	1	10	-1	0,05	1	4	0,92	0,64
26	0,7	1,4	-0,2	7,6	1	0,15	0	2	0,98	0,97
27	1,0	1,5	0,2	8,4	1	0,15	0	2	1,13	1,12
28	1	1,5	1	10	1	0,15	1	4	1,41	1,27
29	1,3	1,7	0,6	9,2	1	0,15	0	2	1,30	1,29
30	-1	0,5	0	8,0	0	0,10	0	2	0,32	0,43
31	0,1	1,1	-0,6	6,8	0	0,10	1	4	0,64	0,62
32	0,3	1,2	-0,2	7,6	0	0,10	1	4	0,75	0,74
33	1	1,5	0	8,0	0	0,10	0	2	0,52	0,75
34	0,6	1,3	0,2	8,4	0	0,10	1	4	0,90	0,89
35	0,8	1,4	0,4	8,8	0	0,10	1	4	1,13	1,11

продолжение таблицы 1

36	0	1,0	-1	6,0	0	0,10	0	2	0,26	0,33
37	-0,9	0,5	1	10	-1	0,05	0,2	1,6	1,96	1,95
38	-0,2	0,9	1	10	-1	0,05	0	2,0	2,06	2,04
39	0,5	1,2	1	10	-1	0,05	0,2	2,4	2,08	2,04
40	1,1	1,6	1	10	-1	0,05	0,4	2,8	2,10	2,09
41	0	1,0	0	8,0	-1	0,05	0	2	0,28	0,34
42	-0,1	0,9	-1	6,0	1	0,15	-0,4	1,2	0,10	0,09
43	0,2	1,1	-1	6,0	1	0,15	-0,2	1,6	0,31	0,30
44	0,4	1,2	-1	6,0	1	0,15	0	2	0,39	0,38
45	0,7	1,3	-1	6,0	1	0,15	0,2	2,4	0,47	0,46
46	0,9	1,4	-1	6,0	1	0,15	0,4	2,8	0,52	0,51
47	1,1	1,5	-1	6,0	1	0,15	0,6	3,2	0,55	0,54
48	0	1,0	0	8,0	0	0,10	0	2	0,47	0,58
49	-1,1	0,4	0	8,0	0	0,10	0	2	0,12	0,11
50	-0,8	0,6	0	8,0	0	0,10	0,2	2	0,15	0,14
51	-0,6	0,7	-1	6,0	0,5	0,13	0	2	0,16	0,15
52	-0,5	0,8	0	8,0	0	0,10	0,4	3	0,19	0,18
53	-0,9	0,6	1	10	-0,7	0,08	0	2	1,46	1,44
54	-0,2	0,9	0	8,0	0	0,10	0,6	3	0,20	0,18
55	0	1,0	0	8,0	1	0,15	0	2	0,96	0,85
56	0,5	1,2	0	8,0	0	0,10	1,0	4	0,16	0,15
57	-1	0,5	-1	6,0	0,2	0,11	0	2	0,12	0,11
58	0,7	1,3	-1	6,0	1,1	0,16	0	2	0,27	0,26
59	-0,2	0,9	1	10	-1,0	0,05	0	2	1,44	1,43
60	-1,2	0,4	1	10	0,4	0,10	0	2	1,48	1,47
61	-0,2	0,9	-1	6,0	-0,7	0,07	1	4	0,50	0,48
62	0	1,0	0	8,0	0	0,10	1	4	0,59	0,55
63	-0,1	0,9	-1	6,0	-0,1	0,10	1	4	0,58	0,56
64	0,5	1,2	-1	6,0	0,5	0,13	1	4	0,66	0,65
65	1,0	1,5	-1	6,0	0,8	0,14	1	4	0,76	0,75

Список литературы

- 1. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 279 с.
- 2. Гуськов В.В. Оптимальные параметры сельскохозяйственных тракторов. М.: Машиностроение, 1966. 196 с.
- 3. Дружинин Н.К. Выборочное наблюдение и эксперимент. М.: Статистика, 1977. 176 с.
- 4. Фирсов М.М. Сельскохозяйственные погрузочно-разгрузочные машины непрерывного действия (конструкция, теория и расчет). М.: Инфра.— М, 1996. 240 с.