
Реактронные [m4, Л4+, Р.20, Л40}Р-вентильные конвертеры электро-энергии/Базовые: электрические сжемы и поясняющие принцип их действия векторные диаграммы в фазовой плоскости, их изображения (дизайн) формы токов, конструктивно-энергет ические показатели (КЭП) и экономии

 $\Pi = 8 > B = 6$, $\Pi'' = B'' = 2$, $\Pi' = B' = 4$, $B_p = 2$, $B_n = 2$ $B = B' + B_p = 2B'' + B_p = 6$, $\Pi = 2\Pi' = 4\Pi'', B_H = 2$ $U_0 = 4\sqrt{2-\sqrt{2}}/\Re = .9744954$, $\theta = \pi/8 = 22.5°$ $U_0^{-1} = \Re \sqrt{\sqrt{2^{++}/32}} = 1,026172, m_H = 2, V_2 = 2$ $B_0 = 1/\sqrt{2} U_0 = \pi \sqrt{\sqrt{2^{++}}}/8 = .72561325 = B_A$ $y_p = \sqrt{\frac{1}{2}} / \sqrt{2} = 1,3065629, \alpha = \alpha' y_p = y_p$ $Ba = aB_0 = \pi\sqrt{2} + /8 = .94805938, BA = B_0$ $D_{\alpha} = \sqrt{2-\sqrt{2}} = .38268345$, $D_{A} = \sqrt{2}/m_{u} \in MIN$ $W_1 = W_2 = \sqrt{2}^{-}/\sqrt{2} = .2928932, W_{10} = 1/\sqrt{2} = .7071$ $W_C = \sqrt{2}^- = .4142135$, $W_{EA} = 4\alpha = 5,226257$ $K_{H\bar{H}} = 4D_{CB} B_{CC} = \pi \sqrt{2^{++}}/4 = 1,45, K_{\Pi G\bar{H}} = 45,1227$ $K_{H\bar{I}} = 2D_AB_A = U_0^{-1} = 1,026, K_{\Pi D\bar{I}} = 2,6172\% + MIN$ $K_{H} = (K_{H\bar{1}} + K_{H\bar{1}})/2 = \pi \sqrt{5 + 7/\sqrt{2}/8}, K_{DD} = 23,87\%$ $9\pi, \pi_9/m_4 = 2, 1.43; 3\pi_9, 1/m_8 = 3.15, 37.2, 3\pi = 8$

V₁,V₅ more WV112 more WLV5 mar

 S_{μ} μ : | 7|8|1|2|3|4|5|6| at A (iA=aia) W1,2,c - TO WE, 4TO B m4P_ V1,2,7,8 01 W1C V2 V7 ///// V8 Vp1,2 - то же, что в m4P_ 1 1

Π=8<B=10, Π=2Π'=4Π",B"=4,B'=8,B0=2 $B = B' + B_D = 8 + 2$, $B_D = 3$, $B_{H} = 2$, $m_{H} = 2$, $M_{2} = 2$ $U_0 = 4\sqrt{12\sqrt{2}} / \pi = .9745, U_0^{-1} = \pi\sqrt{12^{++}/32} = 1.03$ $B_0 = \pi \sqrt{2^{++}}/8 = .7256 = B_A, \Theta = \pi/8 = 22.5^{\circ}$ $y_{p_{-}} = \sqrt{\frac{12^{+}}{12}} = 1,307, \alpha = \alpha'y_{p_{-}} = y_{p_{-}} = 1,31$ $W_{1,2} = \sqrt{2} / \sqrt{2} = .293, W_C = \sqrt{2} = .414, W_{1C} = .711$ $W_{\Sigma a} = \sqrt{2/2/2^+} = 2.613, W_{\Sigma a} = \pi/2^+/2\sqrt{2} = 2.682$ $B_{\alpha} = \alpha B_{0} = \pi \sqrt{2} + /8 = .948$, $D_{\alpha} = \sqrt{2^{++}/1/2} = .5412$ $D_A = \sqrt{2}/m_H = 1/\sqrt{2} = .71 + MIN, B_A = B_0 = .726$ $K_{H\bar{I}I} = 2D_{\alpha}B_{\alpha} = K_{H\bar{I}} = 2D_{A}B_{A} = K_{H} = U_{0}^{-1} \leftarrow MIN^{-1}$ Knp. I. i = 100 K = 2,6172 % + MIN, cosg=1 $A = K_{H\bar{H}}/B_0 = \sqrt{2}$, $G = W_{\Sigma 0}/K_{H\bar{H}} = W_{\Sigma a} = 2,613$ Экономии: $3(J_+4P_-/J_+4)$: $3\pi = 2, 3_{no} = 4,23;1$

и (как и в $m4P_{-}/m8$) $3_{m_{H}} = 3_{TP} = 3_{U2} = 2$ при $3\Pi = 8$. Причем реактор в $m4P_{-}$ схе ме, очевидно, включаем и между средними выводами 1-фазных, ортого нально сдвинутых по фазе ВО m"2-лучевых схем, образующих исходную m'4-лучевую схему, либо между по-парио 3,"2-вентильными группами двух Л"2-мостов, образующих Л44-мост, в Л44Р - схеме. Приэтом катоды В вентилей катодных Групп в обенх схемах образуют полюс «+», а аноды Вр вентилей - полюс «-».

 $3(\sqrt{1+4P}-(2+c)/\sqrt{1+4}+4+8))$: 3B=16/10=16, 3E=4/2, 6=1.53, 3D=45, 1/2, 62=17.24

Схема, токи $\{ (P_c 2 P_c) \Pi = 8 = B = 8, K_{\Pi P} = 12,1 \}$ $\{ F \}$ Базовые числа 1980r u:17181112131415161

 $\Pi = 8 = B = 8$, $\Pi' = B' = 4$, $B_{\Pi} = 3$, $B_{P} = 4$, $B_{H} = 2$ $P_{-}=2, \Pi=2\Pi', B=B'+B_{P}, \Psi_{2}=4, m_{H}=2, \theta=\pi/8$ $U_0 = 4\sqrt{2-\sqrt{2}}/\pi = .9745, U_0^{-1} = \pi\sqrt{\sqrt{2^{++}/32}} = 1.026$ $B_0 = 1/\sqrt{2} U_0 = \pi \sqrt{12^{++}}/8 = .72562 = B_A$ $y_p = \sqrt{2^+/12} = 1.307, \alpha = \alpha' y_p = y_p = \sqrt{2^{++}/2}$ $B_{\alpha} = \alpha B_{0} = \pi \sqrt{2} + /8 = .9481, D_{\alpha} = \sqrt{5 - 2\sqrt{2}} / 4 = .3684$ Ступени токов: Ji_a : $\sqrt{2}^{-}/4 = .1036$, $(3-\sqrt{2})/4 = .1036$ $.3984 \simeq .4$, $\sqrt{2} + /4 = .6036$; $Ji_A = \sqrt{2} - \sqrt{2}/2 = .3827$, $\sqrt{\sqrt{2}/2^{+}}/2 = .9239$; W₁ $_{2} = \sqrt{2^{-}}/\sqrt{2} = .293$, W_C = $\sqrt{2}$ W₁ = $\sqrt{2}$ = .414, W_{1c} = 1/ $\sqrt{2}$ = .707, $W_{\Sigma a}$ = 4 α = 2 $\sqrt{2}\sqrt{2^{++}}$ = 5,2263, $W_{\Sigma,0} = \pi \sqrt{2} + \sqrt{2} = 5,363$, $D_{\Delta} = 1/\sqrt{2} = .71 + MIN$ $K_{H\bar{U}} = 4D_{\alpha}B_{\alpha} = \pi\sqrt{11-\sqrt{2}/8} = 1,22, K_{\Pi D\bar{\Pi}} = 21,583\%$ $K_{H\bar{1}} = 2D_{\Delta}B_{\Delta} = U_{0}^{-1} = 1,03, K_{HD\bar{1}} = 2,6172\% \leftarrow MIN$ $K_{\pi p} = (K_{\pi p \bar{i}} + K_{\pi p \bar{i}})/2 = 12,1\% \leftarrow Min \pi p u \exists \{\Pi,B\}$ Экономии Э(ухудшения У): /{-} > {Л8рлзр; т8рлзр; Л8; m8 по множеству [•] \Rightarrow [В, \Вп\, $m_{H} = 4_{TP}$, $/4_{2}$ /, $[W_{\Sigma}], K_{\Pi P, \bar{\Pi}, \bar{1}}]: [2, (1,5), 2, /2/,]1, 21 \wedge 1, 72], 1, 08, 1, 95,$ 4,23; 1,\(3)\,2,/2/, |1,66A2,34|, 2,84, 2,65, 4,23; 2,\(1,5)\, 2,/1/, [(1,31)], 3,73, 2,1, 17,24; 1,\(3)\, 2,/2/, [1,53], 6,2, 4,88,17,24] pasa. /Pc2n: $3\pi = 2, 3_{kn} = 4,17, 3_{LC} = 16.1$

 S_{μ} μ :] 718 | 112 | 314 | 516 | 61 cos g =1 α 1 A $W_{c}/2$ | $(i_{A}$ = $2\alpha i_{\alpha})$ α , α ₁,(A) α 1 W | W | C α 2, α 3, α 4 | W₂,V₃5,3 | W | W | C α 4 | C α 5, α 6 | W | W₁,V₁2,6 | W | C α 7 | C α 8 | W | C α 7 | C α 8 | C α 9 | \\\1,\\\\,V5/\\\\\V8\\\/////

 $\Pi = 8 < B = 10, B = 2\Pi' = 8, B_{\Pi} = 3, B_{P} = 2, B_{H} = 2, P_{-} = 1$ $\alpha = y_p / \sqrt{2} = .924, B_{\alpha} = \alpha B_0 = \pi \sqrt{2} + 16 = .6704, D_{\alpha} = .6704$ $\sqrt{2-\sqrt{2}/2} = .383$. Crynenu Tokob: Ji_a : .5, $W_c/2$, 1 $Ji_A=2\alpha Ji_\alpha$. $D_A=2\alpha D_\alpha=1/\sqrt{2}$ + MIN, $K_{NN}=4D_\alpha B_\alpha$ = KNT = 2DABA = Vo1, Knp. 11.7 = 2,62% + MIN, $W_{\Sigma a} = 4\alpha = 2\sqrt{2^{++}} = 3,6955 \approx 3,7, W_{\Sigma 0} = \sqrt{2^{+}/2} = 3,8$ $A = K_{H\bar{H}}/B_0 = \sqrt{2}$, $G = W_{\Sigma O}/K_{H\bar{H}} = \sqrt{2+\sqrt{2}} = 1.848$. Экономии Э (ухудшения У) относительно (Рс 2 д.Р., {-}}-БВК при том же П=8 по множеству [-]-пара-I \(1.5)\,2,/1/, [1,172\\,1,657],4,23; (1,25)\\(3)\\,2,/1/, [2,34x3,314], 13, 21,8, 4,23; 1,6,\(1,5)\,2,/1/, [1,08], 17, 24; (1,5),\(3)\, 2,/1/, [2,165], 28,72, 40,2, 17,24]); раза, Относительно исходного БВК (Л4п): Эп=2. $3_{k,n} = 32,53/7,8i = 4,165 \approx 3_{\Pi}^2 = 4, 3_{LC} \approx 3_{\Pi}^4 = 16 \text{ pag.}$

© Репин А.М. (Действит. член РАИ и МААНОИ, Москва Россия)

Суть обозначений СМ, в ж. Электрика. 1-2003, с.36-42, в описании изобретения, в книге Азы конверсики. М., 2005. В целом материал по Рн-БВК был по просьбе зам. глав. редактора в редакции ж. "Инженер" I-VI.2004. © Репин А.М. 1980, -95, 2004, 25.6.2007