Определение нормальных напряжений в поперечных сечениях балок с гофрированной стенкой

ассистент Лукин А.О.

При расчете балок с гофрированной стенкой принято считать, что полки воспринимают нормальные напряжения, а стенка – касательные [1, 2]. Но реальная работа гофрированных балок отличается от таких предположений [3]. Участки стенки, примыкающие к поясам, воспринимают нормальные напряжения, которые возникают от изгиба. Для гофров треугольного очертания [4] экспериментально-теоретическим путем выявлено влияние параметров гофров (длины и высоты волны) на степень участия гофрированной стенки в восприятии изгибающего момента. Решения о распределении напряжений в стенке для других видов гофров отсутствуют.

Новый подход к расчету балок с гофрированной стенкой можно сформулировать, если представить ее в виде трехслойной конструкции. Основное предположение при расчете трехслойных конструкций заключается в том, что изменение модуля упругости среднего слоя по высоте сечения описывается математической зависимости, например, экспоненциальной [5] или степенной [6]. Такое допущение для балки с гофрированной стенкой позволит получить аналитическое решение для распределения напряжений в поперечном сечении.

В данной работе предложена методика для определения нормальных напряжений в поперечных сечениях балок с гофрированной стенкой при изгибе со сжатием.



Рис. 1. – К расчету балки с гофрированной стенкой а – расчетная схема; б – поперечное сечение

В основу методики приняты следующие положения:

- справедлива гипотеза плоских сечений;
- элементы балки претерпевают сдвиг;
- при работе материалов возникает линейная зависимость между деформациями и напряжениями.

Для определения напряженного состояния балки гофрированная стенка заменяется на плоскую ортотропную пластинку такой же толщины, но с приведенными упругими характеристиками. Упругие постоянные для плоской ортотропной пластинки, которые зависят от вида и размеров гофра, определяются путем сравнения деформации гофрированной и плоской пластинки при одних и тех же нагрузках.

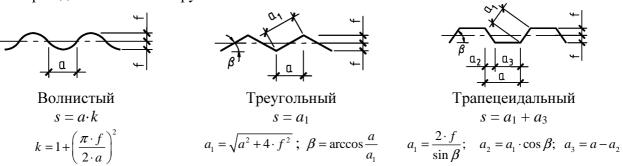


Рис. 2. – Профиль гофрированной стенки

Приведенный модуль сдвига примем по [7]:

$$G_{zo\phi} = G \cdot \frac{a}{s} , \qquad (1)$$

где G – модуль сдвига для изотропного материала; a – длина полуволны; s – длина дуги или панели полуволны (рис. 2).

Приведенный модуль упругости примем из работы Андреевой Л.Е. [8]:

$$E_{zo\phi.x} = \frac{E}{k_1} \tag{2}$$

где E – модуль упругости для изотропного материала; k_1 – коэффициент анизотропии, который зависит от профиля гофра, длины и высоты волны, толщины стенки:

- для трапецеидальных гофров:
$$k_1 = \frac{(2 \cdot f)^2}{t_w^2} \left[\frac{1 - \frac{a_3}{a}}{\cos \beta} + \frac{3 \cdot a_3}{a} \right] + \left(1 - \frac{a_3}{a} \right) \cdot \cos \beta + \frac{a_3}{a};$$
 (2a)

- для треугольных гофров значение k_1 определяется по формуле (2a) при $a_3 = 0$;
- для синусоидальных гофров:

- пологий профиль
$$(f/a < 1/8)$$
: $k_1 = \frac{3}{2} \frac{(2f)^2}{t_w^2} + 1;$ (26)

- произвольный профиль:

$$k_{1} = \frac{\left(2 \cdot f\right)^{2}}{t_{w}^{2}} \cdot \frac{2}{\pi} \cdot \frac{1}{\sqrt{1 - a_{0}^{2}}} \left[\left(\frac{1}{a_{0}^{2}} - 1\right) F_{0} + \left(2 - \frac{1}{a_{0}^{2}}\right) E_{0} \right] + \frac{2\sqrt{1 - a_{0}^{2}}}{\pi} F_{0}, \tag{2b}$$

где F_0 и E_0 – полные эллиптические интегралы первого и второго рода соответственно.

$$E_{0} = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - a_{0}^{2} \sin^{2} \theta} d\theta, \qquad F_{0} = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - a_{0}^{2} \sin^{2} \theta}}, \ a_{0} = \frac{\frac{f\pi}{a}}{\sqrt{1 + \left(\frac{f\pi}{a}\right)^{2}}}, \qquad \theta = \frac{\pi \cdot x}{a}.$$

Полные эллиптические интегралы можно представить в виде степенных рядов:

$$F_0 = \frac{\pi}{2} \cdot \sum_{m=0}^{\infty} \left[\frac{(2 \cdot m)!}{2^{2 \cdot m} \cdot m!^2} \right]^2 \cdot a_0^{2 \cdot m}; \qquad E_0 = \frac{\pi}{2} \cdot \sum_{m=0}^{\infty} \left[\frac{(2 \cdot m)!}{2^{2 \cdot m} \cdot m!^2} \right]^2 \cdot \frac{a_0^{2 \cdot m}}{1 - 2 \cdot m}.$$

Для практических расчетов достаточно принять m=5

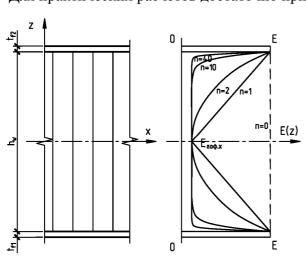
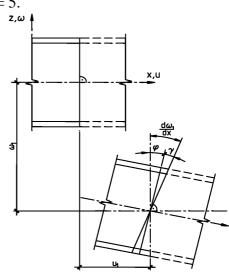


Рис. 3. – Изменение модуля упругости по высоте стенки в зависимости от параметра п



сечения с учетом сдвига

Известно, что нормальные напряжения быстро падают от полки к оси балки. По мере удаления от пояса к оси балки защемляющее влияние поясов на работу гофрированной стенки уменьшается и на некотором расстоянии становится пренебрежимо мало. Поэтому будем считать, что приведенный модуль упругости в стенке по высоте сечения описывается степенной функцией. Тогда для всего сечения можно записать:

$$E(z) = \begin{cases} E \ ecnu \ z \in \left[(0, 5 \cdot h_{w}); (0, 5 \cdot h_{w} + t_{f2}) \right] \\ \left(\left(E - E_{zo\phi,x} \right) \cdot \left(\left| \frac{2 \cdot z}{h_{w}} \right| \right)^{n} + E_{zo\phi,x} \right) ecnu \ z \in \left[- \left(0, 5 \cdot h_{w} + t_{f1} \right); (0, 5 \cdot h_{w} + t_{f2}) \right] \end{cases}$$

$$E \ ecnu \ z \in \left[- \left(0, 5 \cdot h_{w} + t_{f1} \right); - \left(0, 5 \cdot h_{w} \right) \right]$$

$$(3)$$

где z – координата по высоте сечения; $n = \sqrt{k_1} \cdot \sqrt[3]{\frac{1}{B_{co\phi}}}$ – коэффициент, учитывающий защемля-

ющее влияние полки на работу стенки (рис. 3); $B_{co\phi} = \frac{\pi^2 \cdot S_{x,f2} \cdot E}{L^2 \cdot t_w \cdot G}$ - коэффициент податливости

[9]; $S_{x,f2}$ – статический момент пояса относительно оси балки.

Продольные и поперечные перемещения всех точек сечения определяются зависимостью (рис. 4)

$$u(x,z) = u_1(x) + z \cdot \left(-\gamma + \frac{dw_1}{dx}\right)$$

$$w(x,z) = -w_1(x)$$
(4)

где $u_1(x)$ – продольное перемещение от осевой силы; γ - угол сдвига сечения от действия поперечных сил; $w_1(x)$ – прогиб балки с учетом изгибных и сдвиговых деформаций.

Относительную деформацию точек сечения получим, продифференцировав (4)

$$\varepsilon_{xx} = \frac{du(x,z)}{dx} = \frac{du_1}{dx} + z \left(-\frac{d\gamma}{dx} + \frac{d^2w_1}{dx^2} \right)$$
 (5)

Закон Гука при продольном растяжении имеет вид

$$\sigma_{x} = E(z)\varepsilon_{xx} \tag{6}$$

Тогда нормальные напряжения с учетом (5) определяются следующим образом

$$\sigma_{x} = E(z)\varepsilon_{xx} = E(z)\left(\frac{du_{1}}{dx} + z\left(-\frac{d\gamma}{dx} + \frac{d^{2}w_{1}}{dx^{2}}\right)\right)$$
(7)

Усилия в поперечном сечении определяются суммированием напряжений на элементарных площадках

$$N = \int_{A} \sigma_{x} dA; \qquad M = \int_{A} \sigma_{x} \cdot z \ dA$$
 (8)

Подставляя значения напряжения из (7) в (8), получим

$$N = A_0 \frac{du_1}{dx} + B_0 \left(-\frac{d\gamma}{dx} + \frac{d^2 w_1}{dx^2} \right); \qquad M = B_0 \frac{du_1}{dx} + D_0 \left(-\frac{d\gamma}{dx} + \frac{d^2 w_1}{dx^2} \right)$$
(9)

где A_0 , B_0 , D_0 - упруго-геометрические характеристики сечения.

Для двутавровой балки упруго-геометрические характеристики будут иметь вид: - жесткость при растяжении

$$A_{0} = \int_{A} E(z) dA = \int_{-0.5h_{w}-t_{f1}}^{-0.5h_{w}} E \cdot b_{f1} dz + \int_{-0.5h_{w}}^{0.5h_{w}} E(z) \cdot t_{w} dz + \int_{0.5h_{w}}^{0.5h_{w}+t_{f2}} E \cdot b_{f2} dz$$

- упруго-статический момент сечения

$$B_{0} = \int_{A} E(z) \cdot z dA = \int_{-0.5h_{w}-t_{f1}}^{-0.5h_{w}} E \cdot b_{f1} \cdot z dz + \int_{-0.5h_{w}}^{0.5h_{w}} E(z) \cdot t_{w} \cdot z dz + \int_{0.5h_{w}}^{0.5h_{w}+t_{f2}} E \cdot b_{f2} \cdot z dz$$

- жесткость при изгибе относительно оси у (рис. 1)

$$D_{0} = \int_{A} E(z) \cdot z^{2} dA = \int_{-0.5h_{w}-t_{f1}}^{-0.5h_{w}} E \cdot b_{f1} \cdot z^{2} dz + \int_{-0.5h_{w}}^{0.5h_{w}} E(z) \cdot t_{w} \cdot z^{2} dz + \int_{0.5h_{w}}^{0.5h_{w}+t_{f2}} E \cdot b_{f2} \cdot z^{2} dz$$

Запишем уравнения (9) в матричном виде

$$\begin{bmatrix}
N \\
M
\end{bmatrix} = \begin{bmatrix}
A_0 & B_0 \\
B_0 & D_0
\end{bmatrix} \begin{bmatrix}
\frac{du_1}{dx} \\
-\frac{d\gamma}{dx} + \frac{d^2w_1}{dx^2}
\end{bmatrix}$$
(10)

Из матрицы (10) найдем значения производных

$$\begin{vmatrix} \frac{du_1}{dx} \\ -\frac{d\gamma}{dx} + \frac{d^2w_1}{dx^2} \end{vmatrix} = \begin{bmatrix} A_0 & B_0 \\ B_0 & D_0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} N \\ M \end{bmatrix} = \begin{bmatrix} A^* & B^* \\ B^* & D^* \end{bmatrix} \cdot \begin{bmatrix} N \\ M \end{bmatrix}$$
(11)

где
$$A^* = \frac{D_0}{A_0 \cdot D_0 - B_0 \cdot B_0}; \qquad B^* = \frac{-B_0}{A_0 \cdot D_0 - B_0 \cdot B_0}; \qquad D^* = \frac{A_0}{A_0 \cdot D_0 - B_0 \cdot B_0}.$$

Тогда из (12) производные перемещений будут определяться

$$\frac{du_1}{dx} = A^* \cdot N + B^* \cdot M$$

$$-\frac{d\gamma}{dx} + \frac{d^2w_1}{dx^2} = B^* \cdot N + D^* \cdot M$$
(12)

Подставляя (12) в (6) и используя (3), найдем нормальные напряжения в произвольной точке несимметричного перечного сечения

$$\sigma_{x} = E(z)\varepsilon_{xx} = E(z)(A^{*} \cdot N + B^{*} \cdot M + z \cdot (B^{*} \cdot N + D^{*} \cdot M))$$
(13)

При N = 0 и при симметричном сечении ($B_0 = 0$)

$$\sigma_{x} = E(z) \cdot z \cdot D^{*} \cdot M = E(z) \cdot z \cdot \frac{M}{D_{0}}$$
(14)

Пример.

Для применения полученной формулы рассмотрим шарнирно опертую балку по двум сторонам (рис. 1). Балка находится под действие постоянной равномерно распределенной нагрузки q=100 кH/м. Профиль гофра — синусоидальный. Модуль упругости стали $E = 2,06 \cdot 10^4$ кH/см², модуль сдвига $G = 0,8 \cdot 10^4$ кH/см². В примере рассматриваются две балки с различными параметрами гофров (табл. 3).

Табл. 3. Параметры гофрированных балок

No	Пролет L , м	h_w ,	t _w ,	$b_{fl}=\ b_{f2},\ \mathrm{MM}$	$t_{fl}=$ $t_{f2},$ MM	а, мм	f,	k_1	<i>Е</i> _{гоф.х} кН/см ²	$G_{ m {\it co}} \phi \ { m \kappa H/cm}^2$	n	Эскиз гофра
БГС-1	9	750	2,5	200	12	77,5	20	414,2	49,7	6871	41,9	
БГС-2	6	500	8	200	12	150	5	3,34	6160	7978	4,83	

Для проверки надежности полученных результатов по (14) были выполнены расчеты этих же балок по общеизвестной методике, представленной в [1, 2], и методом конечных элементов (МКЭ) в программном комплексе «Лира». Моделирование балок и принятая сетка конечных элементов описано в [11].

T ~ 1			U	
$1an\pi 4$	(павнение і	1 e3VIILTATOR	значении	напряжений.
1 4051. 1.	Cpablicinic p	Desymbratob	Jiia iciiiiii	nanpamenni.

Параметры	Методика Автора ф. (15)	Мето- дика [1,2]	МКЭ	$\Delta_{\rm l} = \frac{\sigma_{\rm aemopa} - \sigma_{\rm obsu}}{\sigma_{\rm aemopa}} \cdot 100\%$	$\Delta_2 = \frac{\sigma_{aemopa} - \sigma_{MK\Im}}{\sigma_{MK\Im}} \cdot 100\%$
Нормальные напряжения в крайнем волокне балки ($x=L/4$), $\kappa H/cm^2$	41,81	41,52	41,8	<u>0,69</u>	<u>0,02</u>
	24,43	27,46	24,1	12,4	1,4

Примечание: значения над чертой для балок БГС-1, под чертой для балок БГС-2: i – соответствующий параметр сравнения.

Результаты расчета показывают (табл. 4), что предложенная методика достоверно отражает работу балки с гофрированной стенкой. Максимальная разница в сравнении с результатами по МКЭ составляет 1,4%. Эпюры напряжений представлены на рис. 5. Сравнивая результаты, полученные по предложенному методу и общепринятым формулам, видно, что при пологих гофрах погрешность в расчетах составляет 12,4%.

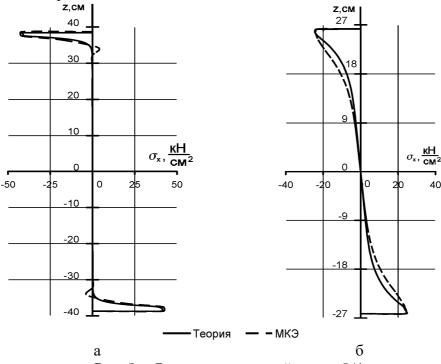


Рис. 5. – Эпюры напряжений при x=L/4:

а — нормальные напряжения в балке БГС-1; б — нормальные напряжения в балке БГС-2

Для проверки применимости предложенного метода дополнительно было рассчитано 15 балок с различным соотношением параметров гофрирования. Отклонения вычисленных значений по предложенной методике от результатов МКЭ для нормальных напряжений в крайнем волокне балки составляет 0,5-2%.

Выводы

- 1. Дано аналитическое решение для распределения напряжений в поперечном сечении балок с гофрированной стенкой.
- 2. Предложенная методика с высокой точностью позволяет определять нормальные напряжения в балке с гофрированной стенкой при различных параметрах гофров.

Литература

- 1. Бирюлев В.В. Проектирование металлических конструкций: Специальный курс [Текст] / В.В, Бирюлев, И.И. Кошин, И.И. Крылов, А.В. Сильвестров, под ред. В.В. Бирюлева. Л.: Стройиздат, 1990. 432 с.
- 2. EN 1993-1-5: 2006. Eurocode 3: Design of steel structures. Part 1-5: General rules Plated structural elements.
- 3. Соловьев А.В. Анализ эффективности применения двутавровго элемента с гофрированной стенкой при работе в сложном напряженно-деформированном состоянии [Текст] / А.В. Соловьев, А.О. Лукин, В.Ю. Алпатов // Промышленное и гражданское строительство. 2010. 10
- 4. Остриков Г.М. Исследование несущей способности стальных двутавровых балок с вертикально гофрированной стенкой [Текст] / Г.М. Остриков, Ю.С. Максимов, В.В. Долинский // Строительная механика и расчет сооружений. 1983. № 1. С. 68-70.
- 5. Venkataraman S., Sankar B. V. Elasticity Solution for Stresses in a Sandwich Beam with Functionally Graded Core // AIAA Journal, VOL. 41, NO. 12: pp. 2501-2505.
- 6. Simsek M. Static analysis of a functionally graded beam under a uniform distributed load by Ritz method // International Journal of Engineering and Applied Sciences (IJEAS). Vol.1, Issue (2009) pp. 1-11.
- 7. Лукин А.О. Определение прогибов балок с гофрированной стенкой с учетом сдвиговых деформаций / А.О. Лукин // Инженерный Вестник Дона: электронный журнал. №1. 2013. ISSN 2073-8633. URL: http://www.ivdon.ru/magazine/archive/n1y2013/1496.
- 8. Андреева Л.Е. Расчет характеристик гофрированных мембран [Текст] / Л.Е. Андреева // Приборостроение. 1956. \mathbb{N} 3. С. 11-17.
- 9. Осипов Ю.К. Исследование клееных деревянных балок с волнистой стенкой из фанеры [Текст]: автореферат / Осипов Ю.К. Новосибирск, 1969. 15 с.
- 10. Биргер И.А. Сопротивление материалов [Текст] / И.А. Биргер, Р.Р. Мавлютов. М.:Наука, гл. ред. физ.-мат. лит., 1986. 560 с.
- 11. Соловьёв А.В. Учет особенностей работы балок с гофрированной стенкой в расчетах на стесненное кручение [Текст] / А.В. Соловьев, А.О. Лукин, В.Ю. Алпатов, В.Н. Савостьянов // Вестник МГСУ. -2012. -№ 11. С. -105–-112.