Министерство образования и науки РФ ФГБОУ ВПО «Кубанский государственный технологический университет» (КубГТУ)

НАУЧНАЯ РАБОТА

На тему <u>"Исследование технологических возможностей ленточноотрезных</u> <u>станков"</u>

Автор: Хачемизов А.З.2 курс гр. 11-ММ-АП1

Научный руководитель: Корниенко В.Г. кандидат техн. наук, профессор

Содержание

Введение	3
1 Режимы резания биметаллическими ленточными пилами	4
2 Расчет зависимости производительности от скорости и подачи	18
3 Графики режимов резания	21
Выводы	25
Список использованных литературных источников	26

Введение

Развитие машиностроения неразрывно связано с развитием машинопотребляющих отраслей народного хозяйства. В промышленности происходит процесс непрерывного совершенствования: расчёт объёма продукций, сокращается производственный цикл, появляются новые технологические процессы, меняются компоновка линий, состав и расстановка оборудования, непрерывно повышается уровень механизации и автоматизации производства. Соответственно возрастают требования к показателям машин, их производительности, степени автоматизации. Некоторые машины с появлением новых технологических процессов становятся ненужными. Возникает необходимость создания новых машин или корневого изменения старых.

Проектированию машин, предназначенных для определённой отрасли промышленности, должно предшествовать тщательное изучение этой отрасли, динамики её количественного и качественного развития, потребностей в данной категории машин и вероятности появления новых технологических процессов и методов производства.

При выборе параметров машины необходимо учитывать конкретные условия её применения. Нельзя, например, произвольно увеличивать производительность машины не учитывая производительности смежного оборудования. В некоторых случаях машины с повышенной производительностью могут оказаться в эксплуатации недогруженными и будут больше простаивать, чем работать. Это снижает степень их использования и уменьшает экономический эффект.

Конструктор должен хорошо знать специфику отрасли и условия эксплуатации машин. Лучшие конструкторы, это те, которые прошли школу производства и сочетают конструкторские способности со знанием условий эксплуатаций объектов проектирования.

После выбора геометрических параметров ленточной пилы следует переходить к очередному этапу разработки технологического процесса ленточного пиления – определению режимов резания.

Процесс резания ленточными пилами характеризуется следующими показателями.

- а) Скорость резания Vм/мин это линейная скорость перемещения полотна ленточной пилы. На практике, при обработке большинства используемых материалов, скорость резания находится в пределах от 5÷м/мин до 110÷120 м/мин. Выбор и назначение скорости резания производится в зависимости от габаритов и конфигурации заготовки, а также от ее материала химсостава, твердости, вязкости, степени динамического упрочнения и других свойств, влияющих на обрабатываемость. При этом обязательно надо учитывать марку и размеры применяемых ленточных пил, кинематические возможности используемого оборудования, жесткость системы СПИД.
- б) Другим важнейшим фактором является производительность процесса ленточного пиления Q, см²/мин, представляющая собой отношение площади поперечного сечения заготовки (площади резания) к времени, за которое был произведен один рез. Зная программу порезки N (количество заготовок разрезаемых за год или месяц) и площадь поперечного сечения одной заготовки S, можно определить машинное время Тм этой программы, что необходимо при проектировании технологического процесса, т.е, (мин. или час)

Иногда на практике удобнее пользоваться показателем «минутная подача» - S мин., т.е. скоростью вертикального перемещения пильной рамки относительно заготовки. Для определения S мин значение высоты разрезаемой заготовки делится на время отрезки .

в) Долговечность биметаллических ленточных пил, выраженная средним периодом стойкости, определяется суммарной площадью (в м²) отрезанных за готовок одной пилой до выхода ее из строя, отнесенная к 1 погонному метру этой пилы (средняя наработка от отказ). Долговечность пил при таком выражении становится универсальной, ибо она не зависит от длины пилы. Таким образом, сравни-

вая стойкость пил идентичных характеристик, но разной длины, мы получим объективный результат.

Например, у пилы длиной 3660мм при шаге зубьев 6,3мм количество режущих зубьев n=581, а у пилы длиной 6 300мм n=1000. Естественно, сравнивая стоимость этих пил при пилении одних и тех же материалов, мы получим различные величины. Относя же суммарную площадь заготовок, разрезанных разными пилами, к длине этих пил, мы получим универсальный показатель $A1 \text{ м}^2/\text{п.м.}$

Следует отметить, что средний период стойкости является показателем статистическим, и рассчитывается на основании результатов испытаний не менее 5 пил при полностью идентичных условиях работы.

Специфика разрезки ленточными пилами при многофакторных условиях отказа или износа является причиной того, что показатели стойкости (долговечности) имеют значительный разброс значений. Поэтому стойкость пил, которая приводится в различных таблицах режимов резания, на практике может быть достигнута при соблюдении целого ряда условий:

- при полном соответствии норм точности и жесткости ленточнопильного станка его паспортным характеристикам;
- правильно выбранных режимах резания для соответствующего материала и формы заготовки, условий резания, качества и типоразмера ленточной пилы;
- правильно подобранной СОЖ, ее концентрации и условий подачи в зону резания.

Для расчета среднего периода стойкости следует, прежде всего, определить критерий отказа (износа), при которых пила не может в дальнейшем ис-

пользоваться. Обычно при ленточнопильной резке используются следующие критерии отказа:

- значительное (более чем в два раза) увеличение времени отрезки при постоянстве всех условий работы пилы;
- отклонение от прямолинейности пропила («увод») более чем на 3мм на длине реза 100мм;
 - сплошное разрушение зубьев на участке длиной более, чем 100мм;

- заклинивание (остановка) пилы в заготовке;
- -разрыв пилы по полотну (за исключением зоны стыковой сварки).

Для выбора режимов резания и оценки эффективности процесса ленточного пиления различными фирмами-изготовителями ленточных пил предлагаются таблицы значений скоростей резания, производительности и стойкости пил. Эти рекомендации разработаны на основе теоретических предпосылок и большого практического опыта по разрезке самых разнообразных материалов.

В принципе, подход к разработке основных параметров ленточного пиления у всех производителей одинаков, хотя и наблюдается разброс количественных значений этих характеристик, что объясняется специфическими свойствами соответствующих марок пил.

Для более точного приближения этих показателей к действительным, следует пользоваться таблицами режимов резания тех фирм, чьи пилы будут применяться в работе.

В таблице 1.2 представлены режимы резания, рекомендуемые фирмой «Simonds» для пил с режущей кромкой из быстрорежущей кобальтовой стали М42 в диапазоне сравнительно небольших шагов зубьев (1,81-6,35мм) и диаметров заготовок (D3<75мм), однако они, с достаточной степенью достоверности, могут быть использованы для назначения режимов резания и более крупных заготовок. К сожалению, в этих данных отсутствуют сведения о работоспособности пил, что объясняется, очевидно, большой многофакторной зависимостью этого показателя от условий резаний.

16		Диаметр D ₃ <25мм	Диаметр D ₃ =25-75мм		
Материал	A	Шаг =1,81-3,18мм	A	Шаг =1,81-6,35мм	
	Скорость резания, м/мин	Производительность резания Q , $cm^2/мин$	Скорость резания, м/мин	Производительность резания Q , $cm^2/мин$	
1	2	3	4	5	
Сталь 10	76,25	52-65	83,87	58-77	
Сталь 60	61,0	26-39	61	32-45	
15Γ	92	52-71	101	71-84	
40Γ	83,87	39-52	76,25	52-65	
50Γ 65Γ	76,25	32-45	76,25	32-52	
60ГМ	76,25	32-45	68,62	32-45	
Никелевые стали	61,0	13-19	61,0	19-32	
20XH	79,3	26-45	79,3	32-45	
40XH	67,1	26-45	61,0	26-45	
30XH	85,40	26-39	76,25	32-52	
50ХФА	70,15	19-32	61,0	26-39	
40XH2MA	70,15	19-26	61,0	26-32	
38ХГНМ	76,25	19-32	70,15	26-39	

1	2	3	4	5
40X2H2M 38X2H2MA	73,2	26-32	67,1	26-39
15X	85,40	26-39-52	76,25	32-45
30X	85,40	26-39	76,25	32-45
40X	76,25	19-32	70,15	19-39
50ХФА	68,62	19-26	61,0	26-32
55C2	61,0	13-26	54,95	19-32
60C2	61,0	6-19	48,80	13-19
P18	39,65	6-13	33,85	13-19
P6M5 P6M5K5	36,60	6-13	33,85	13-19
ХВГ	73,2	19-26	64,05	26-32
40Х5МФС	45,75	13-26	38,13	19-32
3Х2ВФ	45,75	6-19	38,13	6-19
3Х3МФС	67,1	13-26	54,95	19-32
5XHM	61,0	13-26	54,95	19-32
08X13	36,60	13-26	30,5	13-26
12X13	42,7	13-26	36,60	13-26
20X25H2	27,45	6	21,35	6
10X17H13M2T	27,45	6	24,40	6
40X13	45,75	6-19	39,65	6-19
20X17H2 12X18H10T	23	19-32	24	26-39
Бериллиевая бронза HB100120	106,75	26-39	91,50	32-45
HB 220250	76,25	13-26	68,62	19-32
HB 310340	61,0	6-13	48,80	6-13

Более подробные режимы резания для пил марки M42 рекомендует американская фирма «Do-ALL» (таблица 1.3). Для широкой номенклатуры сталей, цветных материалов и сплавов с различными механическими характеристиками в разрезе че-

тырех диапазонов размеров заготовок даны значения скорости резания, производительности и наработки до отказа. Возможность представления таких подробных сведений, очевидно, связана с тем, что фирма «Do-ALL» производит также и ленточнопильные станки, что позволило ей накопить обширный практический материал.

Для проектирования технологический процессов ленточного пиления предлагаем режимы резания биметаллическими ленточными пилами наиболее известных фирм-производителей этого инструмента.

Таблица 1.3 - Режимы резания по «Do-ALL»

Материал	Толщина заготовки мм	Форма зуба	Шаг мм	Скорость резания, м/мин	Производительность резания Q, см2/мин	Наработка до отказа А, м2/п.м.
1	2	3	4	5	6	7
Сталь 10	до25	Reg	2,54/3,18	117,42	51,62	1,08
08КП	25-75	Reg	3,18/4,23	106,75	83,88	1,27
	75-150	Reg KL	4,23/6,35	100,65	96,78	1,27
	свыше 150	KL	8,47/12,70	91,50	83,88	1,27
Сталь 15	до25	Reg	2,54/3,18	122,0	70,97	1,27
Сталь35	25-75	Reg	3,18/4,23	117,42	90,33	1,47
	75-150	RegKL	4,23/6,35	100,65	106,46	1,47
	свыше 150	KL	8,47/12,70	100,65	100	1,47
20XHM	до25	Reg	2,54/3,18	91,50	38,7	0,59
20XHCP	25-75	Reg	3,18/4,23	83,87	45,16	0,69
	75-150	Reg KL	4,23/6,35	83,87	51,62	0,69
	свыше 150	KL	8,47/12,70	76,25	45,16	0,69
15X	до25	Reg	2,54/3,18	91,50	45,16	0,59
	25-75	Reg	3,18/4,23	83,87	51,62	0,69
	75-150	Reg KL	4,23/6,35	83,87	64,52	0,69
	свыше 150	KL	8,47/12,70	73,2	58,07	0,69

Продолжение таблицы 1.3

1	2	3	4	5	6	7
40XH2MA	до25	Reg	2,54/3,18	80,83	35,49	0,49
	25-75	Reg	3,18/4,23	73,2	41,94	0,59
	75-150	Reg KL	4,23/6,35	73,2	48,39	0,59
	свыше 150	KL	8,47/12,70	61,0	41,94	0,59
P6M5	до25	Reg	2,54/3,18	39,65	22,58	0,24
	25-75	Reg	3,18/4,23	36,60	25,8	0,29
	75-150	Reg KL	4,23/6,35	36,60	29,03	0,29
	свыше 150	KL	8,47/12,70	27,45	22,58	0,29
X12	до25	Reg	2,54/3,18	44,22	16,13	0,24
	25-75	Reg	3,18/4,23	39,65	19,35	0,29
	75-150	Reg KL	4,23/6,35	39,65	22,58	0,29
	свыше 150	KL	8,47/12,70	30,5	16,13	0,29
ХВГ	до25	Reg	2,54/3,18	76,25	29,03	0,39
	25-75	Reg	3,18/4,23	64,05	35,49	0,49
	75-150	Reg KL	4,23/6,35	30,5	41,94	0,49
	свыше 150	KL	8,47/12,70	61,0	35,49	0,49
5XHM	до25	Reg	2,54/3,18	67,1	29,03	0,44
	25-75	Reg	3,18/4,23	61,0	35,49	0,49
	75-150	Reg KL	4,23/6,35	61,0	41,94	0,49
	свыше 150	KL	8,47/12,70	53,37	35,49	0,49

Продолжение таблицы 1.3

1	2	3	4	5	6	7
Медь, медные и	до25	Reg	2,54/3,18			
люминиевые спла- вы	25-75	Reg	3,18/4,23			
HB7090	75-150	Reg KL	4,23/6,35	134,2	96,78	1,37
	свыше 150	KL	8,47/12,70	117,42	90,33	1,37
Алюминий	до25	Reg	2,54/3,18	100,65	25,8	0,39
Бронза НВ 90220	25-75	Reg	3,18/4,23	67,1	29,03	0,49
1115 30220	75-150	Reg KL	4,23/6,35	57,95	35,49	0,49
	свыше 150	KL	8,47/12,70	50,32	29,03	0,49
Манганиновые спла-	до25	Reg	2,54/3,18			
вы Бронзы	25-75	Reg	3,18/4,23	134,2	90,33	1,47
НВ 95120	75-150	Reg KL	4,23/6,35	109,8	106,46	1,47
	свыше 150	KL	8,47/12,70	100,65	100,0	1,47
Манганиновыесплавы	до25	Reg	2,54/3,18	117,42	29,03	0,39
Бронзы НВ 180190	25-75	Reg	3,18/4,23	83,87	35,49	0,49
111111111111111111111111111111111111111	75-150	Reg KL	4,23/6,35	67,1	41,94	0,49
	свыше 150	KL	8,47/12,70	57,95	35,49	0,49
Фосфоритные бронзы	до25	Reg	2,54/3,18			
(5-8%P) HB 60100	25-75	Reg	3,18/4,23			
115 00100	75-150	Reg KL	4,23/6,35	134,2	70,97	1,18
	свыше 150	KL	8,47/12,70	100,65	64,52	1,18

Продолжение таблицы 1.3

1	2	3	4	5	6	7
Кремниевые брон-	до25	Reg	2,54/3,18			
зы HB70100	25-75	Reg	3,18/4,23	134,2	90,33	1,47
111570100	75-150	Reg KL	4,23/6,35	109,8	106,46	1,47
	свыше 150	KL	8,47/12,70	50,32	100,0	1,47
Кремниевые брон-	до25	Reg	2,54/3,18	134,2	29,03	0,39
зы НВ 180210	25-75	Reg	3,18/4,23	83,87	35,49	0,49
1115 100210	75-150	RegKL	4,23/6,35	57,95	41,94	0,49
	свыше 150	KL	8,47/12,70	50,32	35,49	0,49
Бериллиевая брон-	до25	Reg	2,54/3,18	134,2	38,7	0,64
за НВ 100120	25-75	Reg	3,18/4,23	117,42	48,39	0,74
110 100120	75-150	Reg KL	4,23/6,35	91,50	54,84	0,74
	свыше 150	KL	8,47/12,70	76,25	48,39	0,74
Бериллиевая брон- за HB310340	до25	Reg	2,54/3,18 3,18/4,23	82,35	19,35 19,35	0,29
	75-150	Reg KL	4,23/6,35	47,27	22,58	0,34
	свыше 150	KL	8,47/12,70	36,60	16,13	0,34
К-монель	до25	Reg	2,54/3,18	30,5	11,61	0,08
HB 160210	25-75	Reg	3,18/4,23	27,45	12,26	0,09
	75-150	RegKL	4,23/6,35	27,45	14,19	0,09
	свыше 150	KL	8,47/12,70	21,35	7,74	0,09

Окончание таблицы 1.3

1	2	3	4	5	6	7
KR-монель	до25	Reg	2,54/3,18	36,60	19,35	0,14
HB 160210	25-75	Reg	3,18/4,23	33,85	19,35	0,16
	75-150	Reg KL	4,23/6,35	33,85	22,58	0,16
	свыше 150	KL	8,47/12,70	21,35	16,13	0,16
Инконель	до25	Reg	2,54/3,18	36,60	19,35	0,12
HB 150200	25-75	Reg	3,18/4,23	33,85	19,35	0,14
	75-150	Reg KL	4,23/6,35	33,85	22,58	0,14
	свыше 150	KL	8,47/12,70	13,33	16,13	0,14
ГастеллойА	до25	Reg	2,54/3,18	42,7	19,35	0,17
НВ210260 ЭП-567(ХН65МВ)	25-75	Reg	3,18/4,23	39,65	19,35	0,19
	75-150	Reg KL	4,23/6,35	39,65	22,58	0,19
	свыше 150	KL	8,47/12,70	25,92	16,13	0,19

Большой выбор скоростей резания биметаллическими твердосплавными пилами для различных материалов предложен немецкой фирмой «Arntz» (таблица 1.4).

Таблица 1.4 - Режимы резания по «Arntz»

Группа	Специфика по	Скорость м/мин	Вид СОЖ		
материалов	DIN	Для биме-	доспла-	Масло	Эму- льсия
1	2	3	4	5	6
	St 37-2	80-100	100-130		X
Конструкционные стали	St 50-2	60-85	100-130		X
	St 60-2	50-70	90-120		X
	C10	80-100	110-140	X	
Цементируемые стали	21NiCrMo2	50-60	80-100	X	
	16MnCr5	40-60	70-90	X	
Автоматные стали	9S20	80-120	100-160		v
Автоматные стали	45S20				X
	C45	60-70	90-120		X
Термообраба-тываемые ста-	40Mn4	60-70	70-90		X
ли	36NiCr6	50-65	70-90		X
	42CrMo4	50-65	70-90		X
Шарикоподшипниковые	100Cr6	35-50	70-90		X
стали	100CrMn6	33-30	65-85		X
Пружници до столи	65Si7	45-60	65-85		X
Пружинные стали	50CrV4	HJ-00	03-03		X
Нелегированные инструмен-	C125W	40-60	70-85		X
тальные стали	C75W		10-03		X

1	2	3	4	5	6
	125Cr1	40-50	65-80	X	X
Нетеплостойкие стали	X210Cr12	30-40	40-50	X	X
Петенлюстойкие стали	X42Cr13	35-45	40-50	X	X
	100CrMo5	30-50	45-55	X	X
Теплостойкая сталь	56NiCrMoV7	40-50	70-90	X	X
	S6-5-2-5		50-60		X
Быстрорежущие стали	S 2-10-1-8(M42)	35-45	45-60		X
	S 6-5-2		50-60		X
Клапанные стали	X45CrSi9-3	30-45	50-60	X	X
Клапанные стали	X45CrNiW18-9	30-40	40-50	X	X
	X10CrSi6		30-40	X	X
Высокопрочные стали	X10CrAl18	15-25		X	X
	X15CrNiSi25-20			X	X
Жаронронии за стани	X20CrMoV12-1	10-30	40-60	X	X
Жаропрочные стали	X5NiCrTi26-15	10-30	40-00	X	X
	XCrNi18-10		70-80	X	X
Нержавеющие стали	X6CrNiMoTi12-	30-40	65-75	v	
	12-2		03-73	X	X
Литая сталь	GS-38	20-30	70-100		X
литах сталь	GS-60	20-30	60-85		X
Чугуны	GG-15	30-60	60-80	Без	
т угуны	GG-30	_50-00	55-75	СОЖ	
Медь	E-Cu	100-400	90-140	X	X
тисдь	KE-Cu	100-400	70-140	X	X

Окончание таблицы 1.4

1	2	3	4	5	6
Латунь	CuZu10	100-400	104-390		X
Julynb	CuZu31Si1	100-400	104 370		X
Алюминиевые бронзы	CuAl8	35-50	65-91		X
тыноминиевые оронзы	CuAl10Fe3Mn2	35-50	52-65		X
Бронзы	CuSn6	80-150	91-130		X
	CuSn6Zn6		71-130		X
Красные бронзы	G-CuSn10Zn	50-100	91-130		X
красные оронзы	G-CuSn5ZnPb	30-100	91-130		X
Никелевые сплавы	NiCr20TiAll	10-25	20-30	X	X
никелевые сплавы	NiCr22FeMo	10-23	22-35	X	X
	A199c5		180-950		X
Алюминий и его сплавы	AlMgSiPb	80-800	150-910		X
	G-AlSi5Mg		130-900		X
Тутаугаруга атугаруг	Ti99,5	10-20	65-90	X	X
Титановые сплавы	TiAl6V4	10-20	03-90	X	X
Тормоную оруч	PVC	100-400		Без	
Термопласты	тефлон	100-400		СОЖ	
Φνώρου να οπιγγο	Resitex	50-300		Без	
Фибропластики	Novotex	_30-300		СОЖ	

В общем плане, приведя многочисленные и разнообразные сведения по режимам резания биметаллическими ленточными пилами, мы хотели бы обратить внимание на следующие обстоятельства. При использовании рекомендаций по выбору скорости и производительности процессов ленточного пиления на практике, при их реализации, зачастую имеют место отклонения количественных значений стойкости (или наработки до отказа) используемых пил от табличных величин. В этих случаях методически следует поступать таким образом. Первоначально выбирать средние значение производительности и скорости резания, а затем оценивать

степень соответствия практических результатов стойкости (наработки до отказа) табличным значениям этого показателя. При их резком отличии необходимо провести корректировку режимов резания в соответствии с рекомендациями по подготовке ленточных пил к работе и правильной их эксплуатации, проверить работу станка, твердость отрезаемого материала, состав и подачу СОЖ, уточнить значение показателя наработки пил до отказа.

При порезке материалов, имеющих размер сечения значительно больше 150мм, (например, 400÷600мм), рекомендуется уменьшить табличные значения производительности отрезки, что, в свою очередь, изменит стойкостные показатели пил.

Отрезка пакетов, а также профилей и труб, особенно тонкостенных, значительно отличается от порезки сплошных единичных заготовок.

Рекомендуется уменьшать производительность отрезки в тем большей степени, чем тоньше стенки или ребра заготовок, и чем меньший объем зажатого в тисках пакета заготовок занимает сплошное сечение материала.

Конкретные значения параметров резания заготовок переменного профиля, к сожалению, в табличных данных нигде не приводятся.

Обычно, при порезке тонкостенных труб (толщина стенки 1,5-3мм) значение производительности понижают на 25-40%, но возможно и большее изменение в случаях многоразового врезания пилы в заготовку, имеющую переменный профиль, что чревато преждевременным износом и разрушением зубьев.

Скорость пилы, как правило, остается в пределах табличных значений, а иногда может быть повышена, что связано со стремлением уменьшить нагрузку на каждый зуб при уменьшении подачи пилы.

Показатели долговечности (стойкости), представленные в таблицах для сплошных сеченый, в данном случае имеют лишь ориентировочный характер. Обычно они ниже, но с увеличением толщины стенок до значений, при которых в каждой стенке размещаются 5-6 зубьев пилы, они все более приближаются к табличным показателям.

Сталь 10.

Диаметр заготовки 250мм.

Пила M42 8300x67x1.6 2/3 ТРІ.

V=90м/мин, S=0.006 мм/зуб.

S=9000*0.006=54 мм/мин.

t=250:54=4.6 мин.

 $Q=490:46=106 \text{ cm}^3$.

V=80м/мин, S=0.006 мм/зуб.

S=8000*0.006=48 MM/MUH.

t=250:48=5.2 мин.

 $Q=490:5.2=94 \text{ cm}^3$.

V=70м/мин, S=0.006 мм/зуб.

S=7000*0.006=42 MM/MUH.

t=250:42=5.95 мин.

 $Q=490:5.95=82 \text{ cm}^3$.

V=60м/мин, S=0.006 мм/зуб.

S=6000*0.006=36 мм/мин.

t=250:36=6.94 мин.

 $Q=490:6.94=71 \text{ cm}^3$.

V=50м/мин, S=0.006 мм/зуб.

S=9000*0.006=30 мм/мин.

t=250:30=8.3 мин.

 $Q=490:8.3=59 \text{ cm}^3$.

Диаметр заготовки 250мм.

Пила M42 8300x67x1.6 2/3 ТРІ.

V=70м/мин, S=0.005 мм/зуб.

S=7000*0.005=35 мм/мин.

t=250:35=7 мин.

 $Q=490:7=70 \text{ cm}^3$.

V=60м/мин, S=0.005 мм/зуб.

S=6000*0.005=30 мм/мин.

t=250:30=8.3 мин.

 $Q=490:8.3=59 \text{ cm}^3$.

V=50м/мин, S=0.005 мм/зуб.

S=5000*0.005=25 мм/мин.

t=250:25=10 мин.

 $Q=490:10=49 \text{ cm}^3$.

V=40м/мин, S=0.005 мм/зуб.

S=4000*0.005=20 мм/мин.

t=250:20=12.5 мин.

 $Q=490:12.5=39 \text{ cm}^3$.

Сталь 45ХН2МФА

Диаметр заготовки 250мм.

Пила M42 8300x67x1.6 2/3 ТРІ.

V=50м/мин, S=0.004 мм/зуб.

S=5000*0.004=20 мм/мин.

t=250:20=12.5 мин.

 $Q=490:12.5=39 \text{ cm}^3$.

V=40м/мин, S=0.004 мм/зуб.

S=4000*0.004=16 мм/мин.

t=250:16=15.6 мин.

 $Q=490:12.5=31 \text{ cm}^3$.

V=30м/мин, S=0.004 мм/зуб.

S=3000*0.004=12 мм/мин.

t=250:12=20.8 мин.

 $Q=490:20.8=39 \text{ cm}^3$.

Сталь Х23Н18

Диаметр заготовки 250мм.

Пила M42 8300x67x1.6 2/3 ТРІ.

V=40м/мин, S=0.002 мм/зуб.

S=4000*0.002=8 мм/мин.

t=250:8=31.25 мин.

 $Q=490:31.25=16 \text{ cm}^3$.

V=30м/мин, S=0.002 мм/зуб.

S=3000*0.002=6 мм/мин.

t=250:6=41.7 мин.

 $Q=490:41.7=12 \text{ cm}^3$.

V=20м/мин, S=0.002 мм/зуб.

S=2000*0.002=4 мм/мин.

t=250:8=62.5 мин.

Q=490:62.2=8 cm³.

3 Графики режимов резания

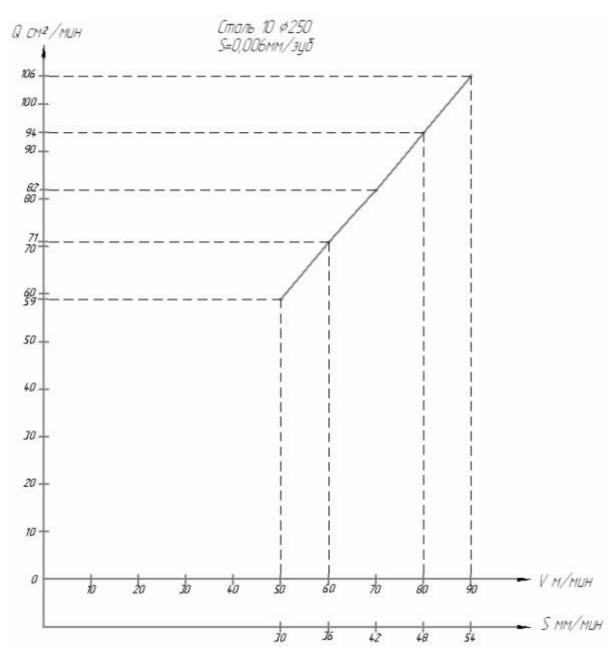


Рисунок 3.1 – Сталь 10

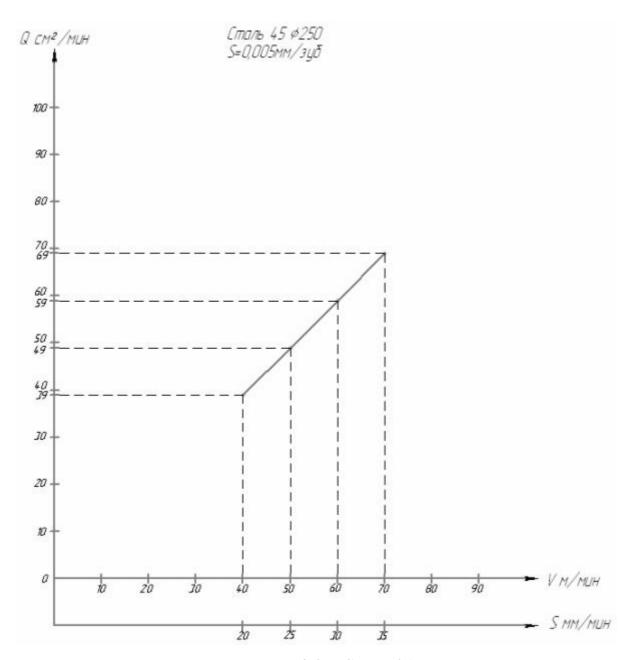


Рисунок 3.2 – Сталь 45

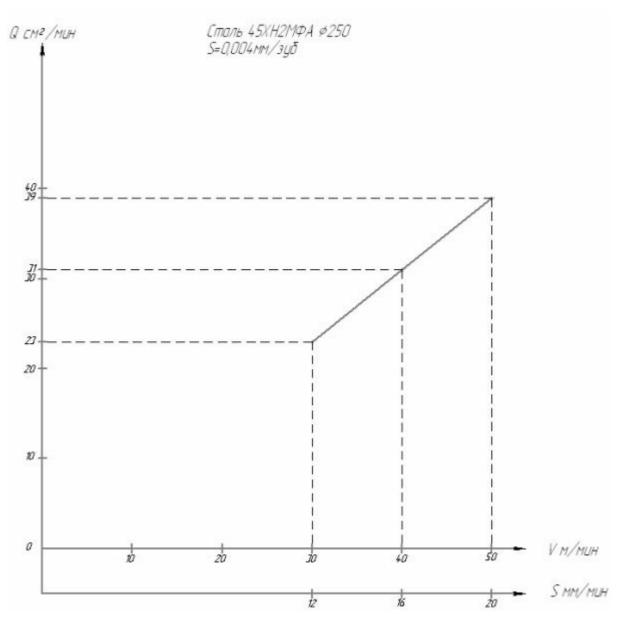


Рисунок 3.3 – Сталь 45ХН2МФА

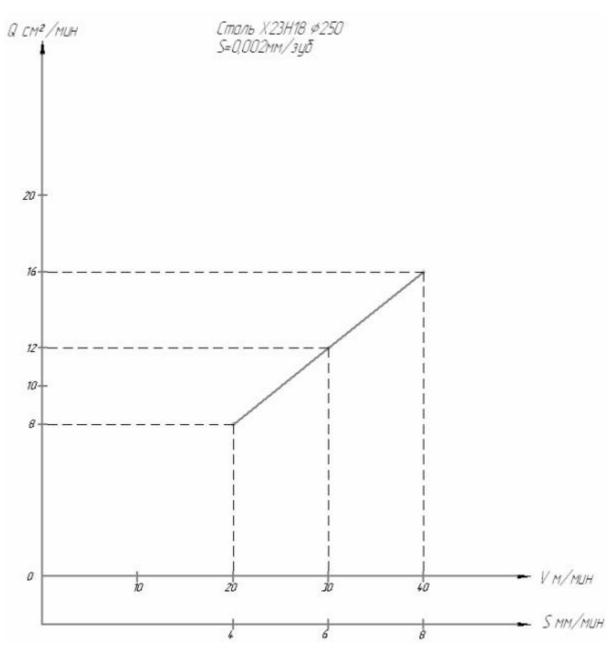


Рисунок 3.4 – Сталь Х23Н18

Вывод

По результатам исследований данной работы можно сделать следующий вывод, производительность ленточного полотна зависит и от скорости резания и подачи.

Список использованных литературных источников

- 1 Проников А.С. Расчёт и конструирование металлорежущих станков: Учебное пособие для вузов. М.: Госиздат, 1962. 422с.
- 2 Тарзиманов Г.А. Проектирование металлорежущих станков. М.: Машиностроение, 1972. 312с.
- 3 Дьячков В.Б. Специальные металлорежущие станки общемашиностроительного применения: Справочник/Н.Ф. Кабатов, М.У. Носинов. – М.: Машиностроение, 1983. – 288с., ил.
- 4 Гжиров Р.И. Краткий справочник конструктора: Справочник. Л.: Машиностроение, 1984. 464с., ил.
- 5 Полтева М.К. Охрана труда в машиностроении. М.: Высшая школа, 1980. 294c.
- 6 Основы технологии машиностроения: Методические указания к практическому занятию «Расчет припусков на механическую обработку» для студентов дневной формы обучения/ Сост. Кривченко Ю.И.. Краснодар. КубГТУ. 1995. –50с.
- 7 Дипломное проектирование: Учебно методические указания по оформлению выпускной квалификационной рабаты для студентов специальностей 151001 Технология машиностроения, 151002 Металлообрабатывающие станки и комплексы, 220301 Автоматизация технологических процессов и производств/Сост. канд. нехн. наук, проф. В.Г. Корниенко, канд. нехн. наук, проф. Ю. С. Звягольский, канд. нехн. наук, проф. В.Г. Трембач. Кубан. гос. технол. ун-т; Каф. систем управления и технологических комплексов.- Краснодар: изд. КубГТУ, 2010. 76с.
 - 8 http://www.allist.ru/otrez.php -Ленточноотрезные станки.
 - 9 http://www.gig-ant.com/machinery/26 Ленточноотрезные станки.
 - 10 http://www.gig-ant.com/machinery/26/919.htm Ленточные полотна.
 - 11 http://www.gig-ant.com/machinery/26/920.htm Ленточные полотна.
 - 12 http://www.wilmax.com.ua Ленточные полотна.
 - 13 http://www.stankotorg.ru/html/ Ленточные полотна.