Л.П.Шевцова, С.Д.Пахомов

Саратовский государственный аграрный университет имени Н.И.Вавилова, г.Саратов, Россия

Перспективы использования микробиологических препаратов при возделывании нута в Саратовской области

В настоящее время возрос интерес к проблемам микробиологии в сельском хозяйстве. Значительно расширились наши представления о роли микроорганизмов в жизни растений, формулируются практические задачи по сокращению объемов применения азотных и фосфорных удобрений при выращивании растений, замене пестицидов на микробиологические препараты, защите растений от стресса, в том числе и создаваемого загрязнением почв тяжелыми металлами и радионуклидами.

Микробиологические препараты (МБП) представляют собой живые клетки отселектированных по полезным свойствам микроорганизмов, которые находятся или в культуральной жидкости, или адсорбированы на нейтральном носителе. В 1 миллилитре или грамме препарата содержится до 1-5 млрд.клеток бактерий.

Ведущими функциональными видами МБП в растениеводстве являются микробиологические удобрения, фунгициды, стимуляторы роста, ризобиальные инокулянты для бобовых культур. Живая культура микроорганизмов, входящая в композицию МБП с момента вступления в контакт с развивающимися тканями растений (первичный корень, проросток, устьица или листовая поверхность), сопровождает его на протяжении всего последующего цикла развития, образуя различные типы взаимодействия — симбиотические (бобовые с клубеньковыми бактериями), симбиотрофные, биоконтрольные, пищевых цепей, сигнальные и др.

Наиболее перспективным направлением в решении проблемы биологизации растениеводства является использование «биологического» азота в технологии возделывания бобовых и зернобобовых культур, которые в симбиозе с клубеньковыми бактериями фиксируют азот воздуха, переводя его в азот «биологический». Подобный выбор объясняется его полной безвредностью для

человека и окружающей среды и относительно небольшие затраты энергии на активизацию микроорганизмов, осуществляющих азотофиксацию.

Продуктивность нута, как зернобобовой культуры, тесно связана с его способностью фиксировать молекулярный азот, что улучшает качество семян, и, в частности, повышает содержание белка.

В ходе наших исследований планируется достичь максимального использования биоэнергетического потенциала симбиоза перспективных районированных сортов нута с клубеньковыми бактериями, так как уже доказано, что в полной мере заменить полезную микрофлору спектром химических регуляторов роста, пестицидами и минеральными подкормками не удается.

В программу наших исследований в 2011 г. были включены вопросы изучения полевой и лабораторной всхожести семян сортов нута, выживаемости растений к уборке урожая, особенностей их роста и развития, фотосинтетической и симбиотической продуктивности в зависимости от предпосевной обработки семян и обработки вегетирующих растений такими биопрепаратами, как ризоторфин и экстрасол.

Табл.1. Влияние предпосевной обработки семян биопрепаратами на элементы структуры урожая сортов нута (2011 г.)

Вариант обработки семян	Число растений на	% вызревших бобов на	Семян с 1 растения	
	1 м ² перед уборкой	растении	ШТ.	Γ
Сорт Краснокутский 36				
Контроль (вода)	62	39,5	12,4	2,31
Ризоторфин	68	44,6	13,4	2,52
Экстрасол	71	46,2	13,9	2,65
Сорт Заволжский				
Контроль (вода)	60	38,2	10,6	2,24
Ризоторфин	66	40,6	11,2	2,38
Экстрасол	68	43,8	12,4	2,66

В наших опытах число вызревших плодов на растении, от всего количества образовавшихся, на контрольных вариантах по сорту Краснокутский 36 составило 39,5%, по Заволжскому - 38,2%. На варианте с применением в предпосевной обработке семян ризоторфина, число вызревших бобов заметно увеличивается и наибольший процент вызревших бобов отмечен на вариантах применения в предпосевной обработке семян экстрасола, он составил по Краснокутскому 36 - 46,2%, по Заволжскому - 43,8%.

Таким образом, наибольшим количеством вызревших бобов и сформировавшихся в них семян отличались опытные варианты с предпосевной обработкой семян ризоторфином и экстрасолом, на которых формировались наиболее продуктивные растения по количеству бобов, семян и по массе последних. Эти варианты отличались и наибольшей урожайностью по сравнению с контролем.

Обработка посевов препаратами ризоторфином и экстрасолом в течение вегетации способствовала угнетению патогенной микрофлоры на поверхности растений нута, а также увеличению числа бобов на растении и выполненности семян в бобе.

В дальнейших экспериментах планируется корректировка технологии применения МБП на посевах нута в Саратовской области с учетом традиционных агротехнических мероприятий.