Оглоблин Г.В., Гречановский С.А.

АмГПГУ, Россия. Комсомольск на Амуре.

Стулов В.В.

ИМиМ ДВО РАН, Россия, Комсомольск на Амуре

МЕТОДИКА ВИЗУАЛИЗАЦИИ ТЕПЛОВОГО ПОЛЯ КРИСТАЛЛИЗАТОРА ПРИ РАЗЛИВКЕ НИЗКОТЕМПЕРАТУРНЫХ МЕТАЛЛОВ.

Предложена методика визуализации тепловых полей натурного кристаллизатора с расплавом свинца и алюминия.

Ogloblin G.V., Grechanovsky S. A.

AmGPGU, Russia. Komsomolsk on Amure.

Ctulov V. V. IMiM FEB RAS, Russia, Komsomolsk on Amure

METHOD OF VISUALIZATION OF THERMAL FIELD Mould for casting METALLOV. LOW-TEMPERATURE.

The technique of visualization of temperature fields in-kind mold with molten lead and alyuminiya.

1.Визуализация теплового поля кристаллизатора в процессе разливки расплава Pb-Sb.

Выбираем рабочий интервал температур для стенок и бойков кристаллизатора. Подбором определили мезофазу жидкокристаллического индикатора. Выбраны жидкие кристаллы в интервале 110-115°C. Разогреваем жидкие кристаллы до изотропного состояния и наносим на стенки и бойки кристаллизатора. Даем время для остывания жидких кристаллов. Заливаем в полость кристаллизатора расплав Pb-Sb. На рис.1 представлена динамика формирования теплового с 2с по 112 с. В первоначальный момент площадь теплового поля растет, достигает максимального значения при 37с, а затем начинает плавно уменьшаться. Получить полную тепловую картину в

видимом формате с данным типом жидких кристаллов не удается. Причина кроется:

1.В выборе мезофазы жидких кристаллов.

2.В подогреве кристаллизатора.

Если первое положение требует тестирования по каждому термоиндикатору. То решение второго положения требует информации о количестве тепла необходимое для прогрева кристаллизатора.

Определим динамику формирования площади теплового потока в заданной мезофазе.

Рис.1. Динамика развития теплового поля в кристаллизаторе ЛКМ в процессе разливки расплава Pb-Sb. 1 кадр – 2 сек, 2 кадр – 5 сек, 3 кадр – 8 сек, 4 кадр – 11 сек, 5 кадр – 15 сек, 6 кадр – 25 сек, 7 кадр – 37 сек, 8 кадр – 72 сек, 9 кадр – 112 сек.

Рассчитаем площади излучения:

Кадр 1: $S \approx 432 \text{ мм}^2$. Кадр 2: $S \approx 946 \text{ мм}^2$.Кадр 3: $S \approx 1426 \text{ мм}^2$.Кадр 4: $S \approx 3782 \text{ мм}^2$. Кадр 5: $S \approx 4958 \text{ мм}^2$.Кадр 6: $S \approx 5360 \text{ мм}^2$.Кадр 7: $S \approx 6860 \text{ мм}^2$.Кадр 8: $S \approx 6030 \text{ мм}^2$.Кадр 9: $S \approx 4270 \text{ мм}^2$.

На рис.2 представлена зависимость площади излучения от времени в температурном промежутке 110-125°С. По оси У площадь излучения теплового потока в отмеченном интервале температур, по оси Х время в секундах.

Рис. 2. График динамики теплового процесса кристаллизатора при разливке расплава Pb-Sb. При индикаторе 110-115°C

Из графика рис.2 следует, ЧТО передача тепла OT расплава кристаллизатору заканчивается на 37 секунде, а далее начинается охлаждение кристаллизатора и отдача тепла в пространство, о чем свидетельствуют ветви графика в диапазоне 37-112 секунд.

Кроме того из рис.1, следует, что картина теплового поля отображается только на боковых пластинах, что говорит о том, что температура бойков значительно ниже температуры термоиндикатора.

2. Визуализация теплового поля в процессе разливки алюминия

Учитывая экспериментальные данные первого опыта, для бойков, выбраны жидкие кристаллы с мезофазой 80-87°С, а для боковых стенок 110-125°С. Разогреваем жидкие кристаллы до изотопного состояния и наносим на стенки и бойки кристаллизатора. Нагреваем кристаллизатор до температуры 70-78° С. Заливаем в полость кристаллизатора расплав алюминия. На рис.3 представлена динамика формирования теплового с 2с по1190 с.

Рис.3. Динамика развития теплового поля в кристаллизаторе ЛКМ в процессе разливки алюминия. 1 кадр – 2 сек, 2 кадр – 4 сек, 3 кадр – 6 сек, 4 кадр – 21 сек, 5 кадр – 46 сек, 6 кадр – 81 сек, 7 кадр – 222 сек, 8 кадр – 594 сек, 9 кадр – 708 сек, 10 кадр – 840 сек, 11 кадр – 1062 сек, 12 кадр – 1190 сек.

Определим динамику площади формирования теплового потока:

Кадр 1: $S \approx 586 \text{ мм}^2$. Кадр 2: $S \approx 1125 \text{ мм}^2$.Кадр 3: $S \approx 2178 \text{ мм}^2$ Кадр 4: $S \approx 3750 \text{ мм}^2$.Кадр 5: $S \approx 5775 \text{ мм}^2$.Кадр 6: $S \approx 9058 \text{ мм}^2$ Кадр 7: $S \approx 14735 \text{ мм}^2$.Кадр 8: $S \approx 15925 \text{ мм}^2$.Кадр 9: $S \approx 16646 \text{ мм}^2$.Кадр 10: $S \approx 16800 \text{ мм}^2$.Кадр 11: $S \approx 14131 \text{ мм}^2$.Кадр 12: $S \approx 10938 \text{ мм}^2$.

На рис.4 представлена зависимость формирования площади теплового потока от времени, где по оси Х время по оси У площадь теплового поля.

Рис. 4 График динамики теплового процесса кристаллизатора при разливке алюминия. При индикаторе 80-87°С для бойков и 110-125°С для боковой стенки

Из графика рис.4 следует, что передача тепла от расплава кристаллизатору заканчивается на 840 секунде, а далее начинается охлаждение кристаллизатора и отдача тепла в пространство, о чём свидетельствуют ветви графика в диапазоне 840-1190 секунд.

При анализе рис.3 можно отметить, что на боковых стенках кристаллизатора проявляется контрастное изображение формы расплава в кристаллизаторе. По кадрам рис.3. (7,8,9) можно оценить положение

расплава в канале кристаллизатора. Разница температур между бойком и боковой пластиной для данного случая составляет ~ 30°С.

Применение жидкокристаллических детекторов позволяет отобразить в видимом формате температурные поля объектов исследования.

Предложенная методика исследования позволяет получить как качественные, так и количественные результаты. Обратимость жидких кристаллов дает возможность использовать детекторы многократно.

Литература.

1.Оглоблин Г.В., Гречановский С.А., Стулов В.В. Динамика теплового поля кристаллизатора литейно-ковочного модуля в процессе обжатия сплава Pb-Sb // Научный электронный архив.

URL: <u>http://econf.rae.ru/article/6000</u> (дата обращения: 12.10.2011).

2.Оглоблин Г.В., Стулов В.В. Исследование теплового поля расплава в кристаллизаторе литейно-ковачного модуля перед обжатием. // Научный электронный архив.

URL: <u>http://econf.rae.ru/article/5841</u> (дата обращения: 12.10.2011).

3.Оглоблин Г.В. Стулов В.В. моделирование теплового поля двухканального глуходонного погружного стакана // Научный электронный архив.

URL: <u>http://econf.rae.ru/article/5770</u> (дата обращения: 12.10.2011).