ЖИДКОКРИСТАЛЛИЧЕСКИЙ ДЕТЕКТОР ТЕПЛОВЫХ ПОЛЕЙ РАЗЛИЧНОЙ ПРИРОДЫ

Оглоблин Г.В.

ГОУ ВПО Амурский гуманитарно-педагогический государственный университет. Комсомольск на Амуре, Россия (681000, г. Комсомольск на Амуре, ул. Кирова 17) g-ogloblin@yandex.ru

В работе рассматривается устройство на термотропных жидких кристаллах холестерического типа способное отображать в видимом формате тепловые поля различной природы при соответствующей методике проведения эксперимента.

UDC 532. 738

THE LIQUID CRYSTAL DETECTOR OF THERMAL FIELDS OF THE VARIOUS NATURE

Ogloblin G. V.

GOU VPO the Amur gumanitarno-pedagogical state university. Komsomolsk on the Cupid, Russia (681000, Komsomolsk on the Amur, street of Kirov 17) g-ogloblin@yandex.ru

In work the device on liquid crystals capable to display in a visible format thermal fields of the various nature is considered at a corresponding technique of carrying out of experiment.

В основу разработанного устройства положено свойство жидких кристаллах холестерического типа изменять свою структуру под воздействием температуры. Это изменение можно увидеть в отраженном свете в виде цветовой картины области, в которой произошла перестройка структуры. Суть данного эффекта заключается в том, что порядок структуры \mathbf{d} жидкого кристалла сопоставим с длиной волны λ видимого света, что приводит к дифракции светового потока на структуре. При этом структура приобретает окраску характерную для диафрагмируемой волны. Причём условия дифракции описываются соотношением Вульфа — Брегга

$$2 \operatorname{Sin}\Theta = s\lambda / d$$
,

где s – целое число, d – период структуры, а Θ – угол между направлением падающего пучка света и плоскостью, перпендикулярной холестерической оси. В зависимости от d при освещении холестерика белым светом цвет дифракционно отраженного света будет определять окраску холестерика.

Цвет окраски определяется длиной волны диафрагмирующего света и углом его рассматривания. Если изменяется шаг спирали, то изменяется цвет отражённого света, что воспринимается как изменение окраски холестерика. Учитывая то, что постоянная d жидкого кристалла зависит от температуры, то и окраска его также зависит от температуры. Для правильного использования индикаторов на жидких кристаллах необходимо знать угловую зависимость рассеивания падающего света. Так Фергансон предлагает выражение, в котором длина волны максимального отражения света является функцией угла при постоянной температуре:

$$\lambda' = \lambda_n \cos \frac{1}{2} \left[\arcsin \left(\frac{n}{n'} \sin k \right) + \arcsin \left(\frac{n}{n'} \sin k \right) \right],$$
 где

λ'- длина волны максимального рассеивания;

 λ_n — длина волны максимального рассеивания при пормальном падениии наблюдении;

n – показатель преломления внешней среды;

n' – показатель преломления жидкого кристалла /1,5/;

k, - угол падения света;

k – угол рассеивания /наблюдения/.

При изменении температуры жидких кристаллов длина волны λ' будет изменяться от инфракрасной до ультрафиолетовой области. Следовательно, окраска жидких кристаллов изменяется от красного до тёмно-синего цвета, так для холестерилэрукат это температурный интервал 26° C- 41° C.

Детектор представляет собой сэндвич из двух стеклянных пластин размером 150х170х2,1мм. Размер одной пластины 150х170х1мм. Пластины уложены таким образом, что образуется между ними полость 0,1мм. Это достигается с помощью полиэтиленовой прокладки шириной 3мм и толщиной 0,1мм уложенной по периметру пластин. Прокладка укладывается таким образом, чтобы у диаметрально противоположных сторон в полости были отверстия шириной 5мм. Затем сэндвич помещается на мармит и прогревается до температуры, когда прозрачность полиэтилена и стекла будет однородно. Таким образом, спекаются две пластины с калиброванной полостью. В качестве активного вещества удобно использовать готовые смеси в виде жидкокристаллических термоиндикаторов. Существует целый ряд таких индикаторов, но для демонстрационных опытов удобно использовать термоиндикаторы на 18-23 • C, 23-27 • C, 27-32 • C и т.д. Флакон с выбранным термоиндикатором помещают в водяную баню и разогревают до жидкого состояния. Одновременно прогревают капсулу до температуры выше мезофазы выбранного термоиндикатора на 10 • С. С помощью пипетки через одно отверстие в капсуле вводят жидкие кристаллы, через другое выводят воздух из полости. За счёт сил молекулярного сцепления жидкие кристаллы втягиваются в полость. При заполнении следует следить, затем чтобы не образовывались воздушные пазухи. По завершению заполнения отверстия герметизируются. Одну из сторон капсулы чернят (сажа, эмаль, графит, токопроводная бумага и.д.). Вторая сторона – прозрачна, на ней отображается тепловой процесс. Полученный таким образом детектор позволяет визуализировать тепловые поля в механике, электричестве (1), оптике (2), гидродинамике жидкости(3) и газов (4), радиотехнике и электротехнике (5).

Литература.

- 1.Оглоблин Г.В., др. Из опыта совершенствования эксперимента:// М.Физика в школе. 1978.- №6.-с.73-76.
- 2.Оглоблин Г.В. Визуализация электромагнитной волны в режиме «стоячая волна».// Амурский научный вестник: сборник научных трудов вып.2.-Комсомольск на Амуре: изд. АмГПГУ, 2009.- с.384.
- 3.Стулов В.В. Одиноков В.И., Оглоблин Г.В. Физическое моделирование процессов при получении литой деформированной заготовки Владивосток: Дальнаука, 2009:-175 с.
- 4.Оглоблин Г.В. Федулов Е.Г. Моделирование тепловых полей воздушных потоков.//Актуальные проблемы математики, физики, информатики в ВУЗе школе: материалы Всероссийской региональной н.п.к. 26.марта 2010 г. Комсомольск на Амуре: Изд. АмГПГУ,2010.-с.28-31.
- 5.Оглоблин Г.В. Стулов В.В. // Жидкокристаллический датчик для визуализации электромагнитных волн. Теория и практика механической и электрофизической обработки материалов. Материалы м.н.п.к. г.Комсмольск на Амуре 2009 г. :ч.1. ГОУВПО «КнАГТУ»,2009, -с.61-64.