ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ КВАЗИБИНАРНОГО РАЗРЕЗА AgBiCl₄ - LiBiCl₄ TPEXKOMПOHEHTHOЙ СИСТЕМЫ BiCl₃ – LiCl – AgCl

3.В. Кабалоев, К.Б. Дзеранова

«FHYSICO - CHEMICAL INVESTIGATION OF QUASIBINARY CUT AgBiCl₄ - LiBiCl₄ THREE-COMPONENTAL SYSTEM BiCl₅ - LiCl-AgCl»

Z.V. Kabaloev and K.B. Dzeranova

Северо-Осетинский государственный университет им. К.Л. Хетагурова г. Владикавказ, Россия e-mail: Kabaloev Zalim@mail.ru

Настоящая работа является продолжением изучения тройной системы $BiCl_3 - LiCl - AgCl$ [1]. Комплексные соединения галогеновисмутитов (III) лития и серебра образующиеся из расплавов еще мало изучены.

Целью настоящей работы является исследование взаимодействия тетрахлоровисмутитов лития и серебра трехкомпонентной системы BiCl₃ - LiCl - AgCl в расплавах. Обезвоженные кристаллы получены по методике [2], LiCl квалификации «ч.д.а» обезвоживали по определенной методике [3], BiCl₃ - очищен сублимацией в вакууме. Соединения AgBiCl₄, LiBiCl₄ синтезировали из хлоридов висмута (III), лития и серебра помещенных в ампулу из стекла пирекс, вакуумировали до остаточного давления 10 Па, помещали в муфельную печь при 430°C в течение суток, при помешивании расплава. При охлаждении ампулы и приведения полученных соединений в равновесное состояние сплав отжигали в течение 10 часов при температуре 200 °C. Для построения диаграммы плавкости системы AgBiCl₄ - LiBiCl₄ использованы методы дифференциальный термический (ДТА) и рентгенофазовый (РФА) анализов, а также были изучены некоторые физико-химические свойства. ДТА проводили на пирометре Курнакова ФРУ-64 [4]. Этанолом служил прокаленный оксид алюминия. Скорость нагрева 3-4 град/мин. Точность измерения температуры ± 2 °C [5-6]. Для получения результатов термических исследований применяли РФА. Для получения результатов дифрактограмм использовали дифрактометр ДРОН-2 Cu - K_a –излучении с Ni –фильтром, скорость записи 1град= 2 θ /мин. Интенсивность оценивали по стобальной шкале, межплоскостные расстояния рассчитывали в A° [7-8].

По результатом ДТА и РФА построена диаграмма плавкости политермического разреза $AgBiCl_4$ - $LiBiCl_4$ тройной системы $BiCl_3$ - LiCl - AgCl [9] представленный на рис.1.

Температуры плавления исходных компонентов $AgBiCl_4$ и $LiBiCl_4$ равны 100 и 210 °C соответственно, 168°C [12,13].

Разрез AgBiCl₄ - LiBiCl₄ на ординате имеет две точки пересечения. Этот разрез происходит параллельно стороне LiCl - AgCl тройной системы BiCl₃ - LiCl - AgCl. На рис.1 показаны поля, через которые он происходит от температуры плавления AgBiCl₄ (168 и 100 °C) до точки эвтектики, первично кристаллизуется α - раствор (область α - α), от эвтектики до точки плавления LiBiCl₄ первично происходит кристаллизация α - твердого раствора (область α - α).

Между областями первичных выделений (ж $+\alpha$) и (ж $+\beta$) и областью ($\alpha+\beta$) находится трехфазная область (ж $+\alpha+\beta$). Ликвидус системы AgBiCl₄ - LiBiCl₄ состоит из двух ветвей, которые пересекаются на этом разрезе в точке E при 50 мол.% и температуре плавления 125 С.

Гетерогенная смесь и твердых растворов отделена линиями 17 и 78 мол.% LiBiCl₄ от области гомогенных твердых растворов поле вторичного выделения (ж $+\alpha$ $+\beta$), затвердевает в виде смеси (α $+\beta$) твердых растворов.

 ${
m H3}$ рис.1 видно, что кривые на политермическом разрезе ${
m AgBiCl_4}$ - ${
m LiBiCl_4}$ носят плавный характер и не имеют точек экстремума.

Таким образом, в системе $AgBiCl_4$ - $LiBiCl_4$ образуются твердые растворы α и β с пересечением ветвей ликвидуса в эвтектической точке при $125^{\circ}C$.

В подтверждение к тому, что у нас образуется эвтектика и твердые растворы, были сняты рентгенограммы образцов и исходных соединений. Результаты показывают, что интенсивность линий штрихрентгенограмм исходных компонентов, что свидетельствует о сохранении структуры и о существовании твердого раствора (рис.2).

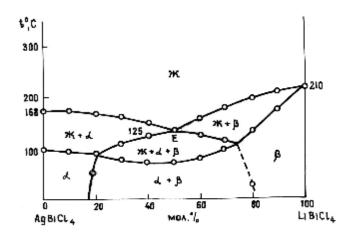


Рис. 1. Диаграмма состояния системы AgBiCl₄-LiBiCl₄

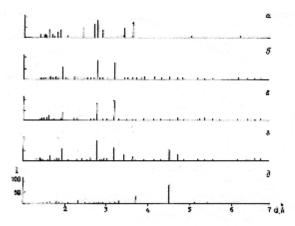


Рис. 2. Штрихрентгенограммы образцов системы AgBiCl₄-LiBiCl₄ a-100, б-80, в-50, г-20, д-0 мол.% AgBiCl₄

Литература

- Кабалоев З.В., Дзеранова К.Б.// Физико-химическое исследование квазибинарного разреза LiCl − AgBiCl₄ трехкомпонентной системы BiCl₃ − LiCl − AgCl // XLV Всероссийская конференция по проблемам математики, информатики, физики и химии. Москва. РУДН. С.43-44. 20-24 апр. 2009г.
- 2. Руководство по препаративной неорганической химии./ Под. ред. Брауэра. М.: Иностранная литература, 1956. C.896.
- 3. Gmelins Handbuch anorg. Chem., syst. 20. Litium 191 (1927)
- 4. Цуринов Г.Г. Пирометр Курнакова Н.С. М.: Изд. АН СССР. 1953. C.48-50.
- 5. Берг Л.Г., Бурмистрова Н.П., Озерова М.И. и др. Практическое руководство по термографии. Казань: Изд. Казан. Ун-та. 1967.-С.219.