Анализ промышленных испытаний бесконтактной гранулометрической компьютерной системы «Индикатор крупности»

В.Н. Круглов, В.Г. Лисиенко УГТУ-УПИ, г.Екатеринбург, Россия А.В. Стародумов, С.Н. Евстюгин НПВП «ТОРЭКС», г. Екатеринбург, Россия

Для металлургической промышленности всегда актуально сокращение материальных и энергетических ресурсов. Такой задачей, например, является экономия компонентов шихтоподготовки железорудных окатышей и сокращение брака при их окомковании. Решение данной проблемы связано с определением и поддержанием с помощью системы управления наиболее оптимального режима работы чашевого или барабанного окомкователей. В свою очередь это заставляет разрабатывать новые измерительные приборы с многофункциональными свойствами, с повышенной точностью, надежностью и быстродействием. Наиболее полно всем этим требованиям удовлетворяют приборы на основе систем технического зрения.

В настоящее время благодаря прогрессу в области микроэлектроники и вычислительной техники системы технического зрения получают все более широкое применение в различных областях науки и промышленности. Наиболее привлекательным достоинством таких систем является бесконтактный способ измерения интересующих параметров изучаемых объектов. Данное обстоятельство обеспечивает таким приборам надежность и долговечность. Применение систем технического зрения в горной промышленности позволяет проводить визуальное разделение руд, микроскопную оценку минералов и оптическое измерение размеров различных объектов. В частности, актуальной задачей является построение систем технического зрения для определения гранулометрического анализа сырых железорудных окатышей.

Данная статья представляет результаты промышленных испытаний бесконтактной гранулометрической компьютерной системы «Индикатор крупности» («Гранулометр»), предназначенной для определения распределения геометрических размеров окомкованных или гранулированных материалов, находящихся на конвейере или движущихся по роликовому грохоту (укладчику). В состав системы входят устройства считывания видеоизображения и компьютер, в котором установлен модуль преобразования аналогового телевизионного кадра в цифровое изображение и реализованы программные блоки, с помощью которых рассчитываются размеры окомкованных или гранулированных частиц и производится их статистическая обработка.

Промышленные испытания бесконтактной гранулометрической компьютерной системы «Индикатор крупности» проводились в разное время на различных предприятиях: Качканарский ГОК (1995г.), Лебединский ГОК (2001г. и 2005г.), Михайловский ГОК (2003г. и 2004г.). В настоящей статье приводятся результаты длительных (более месяца) промышленных испытаний на Костомукшском ГОКе.

Рис.1. Расположение УСВ над роликовым грохотом технологической линии №8 обжиговой машины №2 Костомукшского ГОКа

Первоначально пылезащищенный телевизионный датчик с устройством подсветки (устройство считывания видео изображений (УСВ)) был стационарно установлен над роликовым грохотом технологической линии №8 обжиговой машины №2 (Рис. 1).

При выполнении наладочных работ и юстировки УСВ было проведено предварительное испытание работы системы «Индикатор крупности», результаты которого представлены на рисунке 2.

Опыт проводился следующим образом. Взятая проба сырых окатышей двойного объема была поделена пополам. Одна половина рассеивалась на ситах, а вторая была рассыпана под объективом УСВ. Приведенные результаты показывают, что система «Индикатор крупности» показывает несколько более широкий гранулометрический состав. Это объясняется как погрешностью ситового гранулометрического анализа, так и погрешностью оптического измерения, производимого системой «Индикатор крупности».

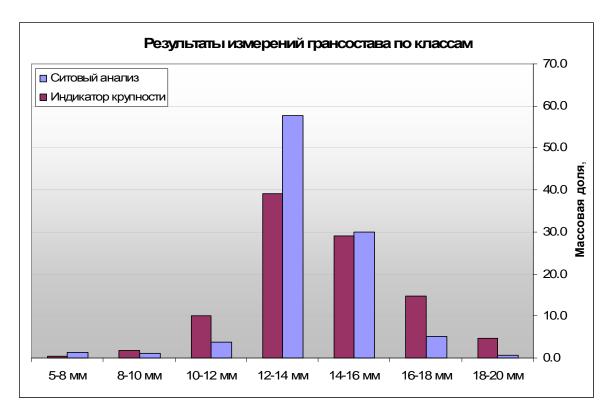


Рис. 2. Результаты тестового определения гранулометрического состава окатышей

После установки и настройки УСВ в течении длительного времени проводился сравнительный анализ работы системы «Индикатор крупности». Для этого, одновременно с работой системы по оценке размеров окатышей в потоке, лабораторией окомкования и обжига проводился отбор проб окатышей с конвейера годного класса, с точным указанием времени отбора пробы. Ввиду того, что момент отбора пробы с конвейера трудно синхронизировать с моментом формирования текущей оценки грансостава окатышей системой «Индикатор крупности», для сравнения из базы выбирали наиболее близкие по времени показания.

Результаты испытаний системы «Индикатор крупности» по оценке размеров окатышей на роликовом грохоте приведены в таблице 1. В таблице 2 приведены результаты рассева сырых окатышей на ситах, полученные лабораторией окомкования и обжига.

Таблица 1. Результаты определения гранулометрического состава окатышей, полученных системой «Индикатор крупности»

По показаниям индикат							катора крупности				
Дата	Время	18-20	16-18	14-16	12-14	10-12	8-10	5-8	dcp,		
		MM	MM	MM	MM	MM	MM	MM	MM		
02.11	10:21	3.25	9.03	23.12	47.99	13.38	2.57	0.63	13.60		
02.11	14:38	2.70	9.29	22.26	48.51	14.14	2.51	0.58	13.56		
03.11	9:21	4.37	14.13	27.31	41.15	10.41	2.16	0.43	14.04		
03.11	10:41	9.35	19.42	29.59	31.59	7.937	1.742	0.39	14.67		
09.11	9:42	4.70	14.87	29.14	39.05	10.10	1.76	0.40	14.16		
09.11	12:41	3.54	13.01	27.87	41.18	11.61	2.29	0.49	13.93		
15.11	9:47	9.70	21.06	28.71	31.64	7.36	1.31	0.23	14.78		
15.11	12:38	4.36	14.88	26.99	39.81	11.77	1.89	0.31	14.07		
16.11	10:37	6.17	13.33	26.09	40.26	11.64	2.14	0.38	14.08		
21.11	9:45	4.99	12.75	28.00	40.91	11.27	1.71	0.34	14.05		
22.11	10:28	11.30	21.13	28.51	30.50	7.20	1.15	0.23	14.89		
22.11	12:37	11.24	20.59	28.96	30.70	7.24	1.03	0.23	14.87		
27.11	9:36	8.29	13.01	26.03	37.61	12.68	2.00	0.38	14.18		
27.11	12:36	7.50	13.96	24.33	39.18	12.63	2.01	0.38	14.14		
31.01	9:06	1.58	7.53	23.53	48.54	15.01	3.11	0.69	13.40		
31.01	13:06	6.31	11.47	22.65	40.16	15.20	3.40	0.81	13.80		

Таблица 2. Результаты определения гранулометрического состава окатышей, измеренных лабораторией окомкования и обжига

		По результатам ручного определения грансостава									
Дата	Время	+20	18-20	16-18	14-16	12-14	10-12	8-10	5-8	-5	d cp,
		MM	MM	MM	MM	MM	MM	MM	MM	MM	MM
02.11	10:21	0.1	2.3	12.7	36.5	41.2	4.5	1.2	0.9	0.5	14.14
02.11	14:38	0.0	1.4	8.1	30.7	49.6	6.5	1.7	1.4	0.6	13.67
03.11	9:21	0.2	1.5	7.1	32.8	50.2	4.8	1.3	1.4	8.0	13.73
03.11	10:41	0.1	2.7	12.8	33.4	44.0	4.1	1.1	1.1	0.6	14.09
09.11	9:42	0.0	0.6	5.1	29.9	57.8	3.7	1.1	1.2	0.5	13.59
09.11	12:41	0.2	0.3	6.3	29.6	54.6	4.9	1.5	1.6	8.0	13.54
15.11	9:47	0.0	2.2	10.6	34.9	43.0	4.4	1.9	1.9	1.0	13.87
15.11	12:38	0.3	1.8	6.1	31.2	49.1	7.9	1.7	1.3	0.5	13.64
16.11	10:37	0.6	1.0	4.8	17.4	58.9	12.2	2.6	1.8	8.0	13.11
21.11	9:45	0.1	0.5	4.9	24.6	57.8	8.6	1.5	1.4	0.6	13.34
22.11	10:28	0.4	2.3	10.9	34.9	41.5	4.5	1.5	2.9	1.2	13.84
22.11	12:37	1.1	4.8	21.5	39.9	26.1	2.9	1.4	1.6	0.8	14.73
27.11	9:36	1.6	2.9	10.6	44.2	33.8	4.5	1.0	1.1	0.4	14.36
27.11	12:36	1.1	3.5	8.2	30.5	47.6	5.6	1.5	1.4	0.5	13.92
31.01	9:06	0.1	0.2	0.9	16.7	63.1	13.7	2.4	2.1	0.9	12.79
31.01	13:06	0.3	1.3	4.5	22.0	59.1	8.5	1.8	1.6	0.9	13.28

Динамику изменения среднемассового диаметра окатышей на конвейере годного класса иллюстрирует рисунок3.

В таблице 3 приведены абсолютные погрешности оценки среднего диаметра окатышей, выполненных системой «Индикатор крупности» в сравнении с показаниями лаборатории окомкования и обжига.

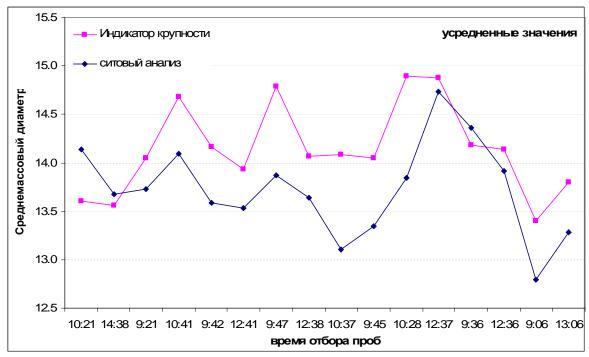


Рис.3. Изменение среднемассового диаметра годных окатышей технологической линии №8 во времени

Таблица 3 Точностные характеристики системы «Индикатор крупности» (по всем указанным пробам)

	1	1	T			
Дата		Абсолютная	Максимальная	Средняя аб-		
	Время		абсолютная по-	солютная по-		
	Брсмя	погрешность %	грешность	грешность		
		70	%	%		
02.11	10:21	3.767745				
02.11	14:38	0.796226				
03.11	9:21	2.350183				
03.11	10:41	4.15099				
09.11	9:42	4.222101				
09.11	12:41	2.941046				
15.11	9:47	6.577838		3.79		
15.11	12:38	3.120942	7.56			
16.11	10:37	7.440871	7.50	3.79		
21.11	9:45	5.29184				
22.11	10:28	7.562767				
22.11	12:37	0.951107				
27.11	9:36	1.263916				
27.11	12:36	1.570792				
31.01	9:06	4.744659				
31.01	13:06	3.867318				

- 1. Подтверждена возможность измерения телеметрическим способом гранулометрического состава потока сырых окатышей, движущихся на роликовом грохоте.
- 2. Расхождения в измерениях гранулометрического состава окатышей, полученных с помощью системы «Индикатор крупности» и по методу ситового анализа составили:
 - среднее значение абсолютной погрешности системы измерений составило 3.79%
 - максимальная абсолютная погрешность системы измерений составила 7.56%.

В сравнении с ситовым анализом отмечено систематическое завышение среднемассового диаметра на величину порядка 0.5 мм, что может быть объяснено эллипсоидной формой окатышей и сепарационными свойствами сит.

- 3. Подтверждена зависимость величины содержания класса окатышей «+20мм» от влажности концентрата.
- 4. Система «Индикатор крупности» показала стабильную работу в непрерывном режиме в условиях цеха производства окатышей.

На основании проведенных испытаний системы «Индикатор крупности» получены следующие выводы:

- 1. Бесконтактная гранулометрическая компьютерная система «Индикатор крупности» является работоспособной системой, позволяющей в промышленных условиях цеха производства окатышей производить непрерывные измерения гранулометрического состава сырых окатышей в диапазоне 5-35 мм при их транспортировке на роликовом грохоте (укладчике). При этом она обеспечивает точность определения среднемассового диаметра около 3.79%, что является достаточно хорошим показателем, характеризующим устройство, как индикатор.
- 2. Результаты измерений и состояние ведения технологического процесса отображаются на дисплее компьютера, что позволит машинисту окомкователя непрерывно контролировать работу технологических линий окомкования по гранулометрическому составу сырых окатышей.
- 3. Конструкцией системы может быть предусмотрена передача информации в другие системы, что позволит интегрировать данную систему в общую систему автоматизации фабрики окомкования.

Литература

- 1. Стародумов А. В., Евстюгин С. Н., Круглов В. Н., Лисиенко В. Г. Автоматизированная система управления процессами получения сырых окатышей «Индикатор крупности». Сталь. 2008. № 12. С. 37-39.
- 2. Lissijenko V., Krouglov V, Kirin D., Lukyantsev I. System for Determining the Geometric Dimenshions of Particlies of a Pelletized or Granulated Material. Proceedings of The 2002 International Conference on Electronics, Information and Communications.- July 9-11, Ulaanbaatar, Mongolia, 2002. C.420-422.
- 3. Lissijenko V.., Krouglov V, Kirin D. Verfahren und Systemzur Bestimmung der geometrischen Abmessungen von Teilchen eines pelletierten und/oder granulierten Materials. Патент GE № 19536238. Дата выдачи 28.04.1998