КОНФОРМАЦИОННЫЙ АНАЛИЗ МОЛЕКУЛЯРНЫХ КОМПЛЕКСОВ 2-МЕТИЛ-1,3,2-ДИОКСАБОРИНАНА С СЕРОВОДОРОДОМ, МЕТИЛМЕРКАПТАНОМ И ДИМЕТИЛСУЛЬФИДОМ

О.Ю. Валиахметова 1 , С.А. Бочкор 1 , В.В. Кузнецов 1,2

 1 Уфимский государственный нефтяной технический университет

Известно, что шестичленные циклические эфиры борных кислот — 1,3,2-диоксаборинаны — являются ценными реагентами тонкого органического синтеза, могут использоваться в качестве добавок к моторному топливу, присадок к смазочным маслам, ингибиторов коррозии, пластификаторов, и потенциальных биологически активных веществ [1,2]. Помимо этого интерес к строению обсуждаемых соединений обусловлен электронными и стерическими внутримолекулярными взаимодействиями, вызванными присутствием электронодефицитного атома бора и электронодонорных гетероатомов кислорода в одной молекуле [1-5]. Это делает их удобными объектами в компьютерном моделировании механизмов взаимодействия субстрата с растворителями различной природы. Наличие электроноакцепторного и электронодонорного центров должно привести к возникновению устойчивых кластеров борный эфир — растворитель. Начальная фаза исследования таких гетероассоциатов связана с анализом структуры и конформационного поведения молекулярных комплексов состава 1:1. Однако до настоящего времени данные системы остаются практически неизученными.

Известно также, что поверхность потенциальной энергии (ППЭ) шестичленных циклических борных эфиров содержит минимумы – инвертомеры $co\phi$ ы – и максимум – 2,5-mbucm- ϕ opму (2,5-T) [5-14].

$$O$$
 B-CH₃ O B-CH₃ O C O B-CH₃ O C

Учитывая все вышесказанное, можно полагать, что соединения этого класса способны к формированию комплексов как с донорами, так и с акцепторами электронной пары. Принципиальная возможность существования таких ассоциатов была ранее подтверждена квантово-химическими расчетами [15]. В этой связи целью настоящей работы является компьютерное моделирование конформационных превращений S→B комплексов: 2-метил-1,3,2-диоксаборинана (I) с молекулами сероводорода (A), метилмеркаптана (Б) и диметилсульфида (В), осуществленное с помощью квантово-химического приближения RHF//STO-3G в рамках программного обеспечения НурегСhem [16].

²Институт физики молекул и кристаллов Уфимского научного центра РАН

Обнаружено, что исследуемые молекулярные комплексы (1:1) существуют в виде смеси энергетически невырожденных инвертомеров C_1 и C_2 , превращающихся друг в друга через переходное состояние 2,5-T.

 $R=R^{1}=H(A); R=CH_{3}, R^{1}=H(B); R=R^{1}=CH_{3}(B)$

Таблица 1. Структурные и конформационные параметры ассоциатов А, Б и В

Соединение	$r_{S\rightarrow B}(A)^*$	Энергетические характеристики, ккал/моль				
		ΔΕ	$\Delta ext{E}^{ eq}$	-ΔΗ		
Эфир I	-	0	6.5	-		
Ассоциат А	3.114	0.5	6.7	1.6		
Ассоциат Б	3.099	0.5	6.7	1.5		
Ассоциат В	3.093	0.5	6.7	1.5		

 $^{*^{)}}$ Для формы C_{1}

Полученные данные (таблица 1) свидетельствуют об относительно небольшой энергетической предпочтительности формы C_I . При этом величина потенциального барьера инверсии ΔE^{\neq} практически не отличается от рассчитанной для самого эфира **I**. Расчетное значение длины координационной связи $S \rightarrow B$ существенно превышает данные эксперимента для заведомо прочных комплексов $C_4H_8S \cdot BBr_3$ (Γ) и (CH_3)₂ $S \cdot BBr_3$ (Γ) (1.966 и 1.934 Å соответственно [17]). Исследуемые комплексы экзотермичны ($\Delta H < 0$), однако энтальпия их образования много меньше наблюдаемой для аддуктов Γ и Γ (23 и 22 ккал/моль соответственно [17]).

Сравнение расчетных значений энтальпии образования ассоциатов эфира **I** с кислородсодержащими донорами электронной пары (**E**, **Ж**, **3**, таблица 2) свидетельствует о заметном ослаблении донорно-акцепторного взаимодействия при переходе от кислорода к сере.

Таблица 2. Расчетная энтальпия образования комплексов А-В и Е-Ж (STO-3G)

-ΔН, ккал/моль								
A	Б	В	E	Ж	3			
1.6	1.5	1.5	9.0	7.5	5.8			

Таким образом, полученные результаты являются важным начальным звеном в исследовании структурных, сольватационных и конформационных характеристик кластеров циклический борный эфир — электронодонорный субстрат. Ассоциаты **A-B** относятся к слабым комплексам, однако даже в этом случае можно ожидать образования сольватной оболочки из нескольких молекул серусодержащего растворителя, специфически или неспецифически связанных с гетероциклическим соединением.

Литература

- 1. А.И. Грень, В.В. Кузнецов Химия циклических эфиров борных кислот. Киев: Наукова думка, 1988. 160 с.
- 2. В.В. Кузнецов Автореф. дисс. докт. хим. наук. Уфа, 2002. 47 с.
- 3. K. Rossi., K. Pihlaya // Acta Chem. Scand. 1985. V.B 39, N 8. P.671.
- 4. В.В. Кузнецов, А.Р. Калюский, А.И. Грень // Журн. орг химии. 1995. Т.31, вып.3. С.439.
- 5. B.B. Кузнецов // Журн. общ. химии. 1999. Т.69, вып.3. C.417.
- 6. В.В. Кузнецов, Е.А. Алексеева // Журн. физ. химии 1999. T.73, вып.5. C.867.
- 7. B.B. Кузнецов // Журн. орг. химии. 2000. T.36, вып.2. C.307.
- 8. В.В. Кузнецов // Журн. структ. химии 2001. Т.42, №3. С.591.
- 9. В.В. Кузнецов, Л.В. Спирихин // Журн. структ. химии 2000. Т.41, №4. С.844.
- В.В. Кузнецов, А.Н. Новиков // Химия гетероцикл. соединений. 2003. №2. С.295.
- О.Ю. Валиахметова, С.А. Бочкор, В.В. Кузнецов // Баш. хим. журн. 2004. Т. 11,
 №1. С.79.
- 12. О.Ю. Валиахметова, С.А. Бочкор, В.В. Кузнецов // Современные наукоемкие технологии. -2005. № 9. C.39.
- 13. О.Ю. Валиахметова, С.А. Бочкор, В.В. Кузнецов // Современные наукоемкие технологии 2006. №2. С.71.
- 14. О.Ю. Валиахметова, С.А. Бочкор, В.В. Кузнецов // Фундаментальные исследования 2006. № 3. С.85.
- 15. О.Ю. Валиахметова, С.А. Бочкор, В.В. Кузнецов // Фундаментальные исследования 2006. № 4. С.81.
- 16. HyperChem 7.01. Trial version. www.hyper.com.
- 17. И.П. Ромм, Ю.Г. Носков, А.А. Мальков // Изв. АН. Сер. хим. 2007. №10. С.1869.