ОПТИМИЗАЦИЯ ПОТЕРЬ ВРЕМЕНИ АВТОТРАНСПОРТНЫМИ СРЕДСТВАМИ НА РЕГУЛИРУЕМОМ ПЕРЕКРЕСТКЕ

Наумова Н.А., Данович Л.М., Савин В.Н., Горшкова С.Н., Булатникова И.Н., Круглова И.А. Кубанский государственный технологический университет Краснодар, Россия

THE OPTIMIZATION OF WAST TIME BY AUTOMOBILE TRANSPORTATIONS ON A SIGNALIZED INTERSECTION

Naumova N.A., Danovich L.M., Savin V.N., Gorshkova S.N., Bulatnikova I.N., Kruglova I.A. *The Kuban State Technological University*

Krasnodar, Russia

В связи с ростом интенсивности движения автотранспортных средств заметно увеличилось время, затрачиваемое на передвижение по улицам города. Заметный вклад в этот негативный факт вносят задержки автомобилей у перекрестков. Согласно проведенным исследованиям распределение интервалов по времени между автомобилями на каждой полосе движения с достаточной степенью точности можно принять подчиненным закону Эрланга второго порядка. В этом случае суммарная задержка у регулируемого перекрестка за время T_i автомобилей, совершающих движение по одной полосе, может быть вычислена

следующим образом:
$$W(T_i, I) = \int_0^{T_i} H_I(t)dt = \frac{IT^2_i}{4} - \frac{T_i}{4} - \frac{e^{-2IT_i}}{8I} + \frac{1}{8I}, i \in \{1; 2\},$$
 (1)

где T_1 — время, в течение которого запрещено движение на главной дороге, с.; T_2 — время, в течение которого запрещено движение на второстепенной дороге, с.; $H_1(t) = \frac{It}{2} - \frac{1}{4} + \frac{1}{4}e^{-2It}$ — число автомобилей в очереди, образующейся за время t секунд на одной из полос для движения; λ — параметр распределения Эрланга второго порядка, $I = \frac{N}{1800}$, N — интенсивность на соответствующей полосе дороги, авт/ч.

Суммарная задержка (авт-ч) за один час календарного времени по всем направлениям

движения равна:
$$\left(T_{\sum}\right)_{p} = \left(\sum_{i=1}^{n \ge n} W(T_{1}, I_{i}) + \sum_{i=1}^{n \text{sm}} W(T_{2}, I_{Bi})\right) \frac{1}{\left(T_{1} + T_{2}\right)},$$
 (2)

 $n_{\it 2л}$ - число полос на главной дороге, $n_{\it 6m}$ - число полос на второстепенной дороге.

В предположении, что параметры распределения Эрланга и длительность цикла регулирования T – постоянные величины, $T_2 = T - T_I$, авторами разработан способ определения наименьшего значения функции (2) от одной переменной $x = T_I$ ($T_I > 0$). Предложенный способ определения параметров светофорного регулирования позволяет минимизировать потери времени автотранспортными средствами на регулируемом перекрестке.