СТАБИЛЬНЫЕ КОНФОРМЕРЫ ОКСОНИЕВЫХ ИОНОВ

цис-2,4-ДИМЕТИЛ-1,3-ДИОКСАНА

А.Е. Курамшина А.Е., ¹ С.А. Бочкор С.А., ¹ В.В. Кузнецов В.В. ^{1,2}

 1 Vфимский государственный нефтяной технический университет

При протонировании 1,3-диоксанов - ценных в практическом отношении кислородсодержащих гетероаналогов циклогексана, — а также других 1,3- и 1,3,2-гетероциклов образуются циклические оксониевые ионы. Последние являются интермедиатами в многочисленных гетеролитических реакциях, катализируемых кислотами, в результате которых образуются сложные эфиры, 1,3-диолы, 5,6-дигидро-1,3-оксазины и другие ценные продукты органического и нефтехимического синтеза [1-5]. Вместе с тем в условиях эксперимента оксониевые ионы можно обнаружить лишь при температурах ниже -50°C, что затрудняет использование физико-химических методов для определения тонких особенностей их структуры. Поэтому весьма актуальным становится изучение строения и конформационного поведения данных частиц с помощью квантово-химических методов [6-10].

В этой связи целью настоящей работы является исследование минимумов на поверхности потенциальной энергии (ППЭ) оксониевых ионов *цис-*2,4-диметил-1,3-диоксана с помощью ограниченного метода Хартри-Фока в базисах STO-3G, 3-21G, 6-31G(d) и 6-31G(d,p), а также методом MP2//6-31G(d,p) в рамках программного обеспечения HyperChem [11].

Известно [12], что главным минимумом на ППЭ самого μuc -2,4-диметил-1,3-диоксана (1) является конформер κpec ла с диэкваториальной ориентацией метильных заместителей (κe). Для его оксониевого иона возможны структурные изомеры (2) и (3).

Кроме того, возможна различная пространственная ориентация протона у атома кислорода кольца [6-10]. Таким образом, в случае диоксана 1 можно предполагать существование четырех стабильных конформеров: 2a, 2e, 3a, 3e - с аксиальной и экваториальной ориентацией кислородного протона.

 $^{^2}$ Институт физики молекул и кристаллов Уфимского научного центра PAH

Их относительные энергии, а также расчетное значение теплоты протонирования (для формы **2a**) представлены в таблице 1.

Таблица 1 Относительная стабильность оксониевых ионов (ΔE) и теплота протонирования (ΔH) (ккал/моль)

Методы		-∆ H			
	2a	2e	3a	3e	(для 2а)
RHF//STO-3G	0	2.0	2.5	4.3	259.7
RHF//3-21G	0	-	1.3	-	220.1
RHF//6-31G(d)	0	1.5	1.3	2.6	208.4
RHF//6-31G(d, p)	0	1.4	1.3	2.6	213.0
MP2//6-31G(d, p)*	0	1.8	1.1	2.8	204.9

^{*)} Предварительно оптимизировано в приближении RHF//6-31G(d,p)

Полученные данные свидетельствуют об энергетической предпочтительности иона **2a** (в рамках приближения 3-21G формы **2e** и **3e** не реализуются). Это соответствует ранее полученным результатам конформационного анализа оксониевых ионов незамещенного, а также 2-метил- и 4-фенил-1,3-диоксанов: наиболее устойчивым при прочих равных условиях является конформер с аксиальной ориентацией кислородного протона [6-10].

Маршрут конформационной инверсии иона **2a** включает минимумы: ион **2e**, формы 1,4-твист [1,4-T(1) и 1,4-T(2)] и инвертомер κ ресла K^* ; их относительные энергии (Δ E) и значения барьеров конформационной изомеризации (TS, ΔE^{\neq}) представлены в таблице 2.

Таблица 2 Параметры конформационной изомеризации иона 2a (STO-3G, ккал/моль)

ΔΕ				$\Delta ext{E}^{ eq}$				
2a	2e	1,4-T(1)	1,4-T(2)	K*	TS-1	TS-2	TS-3	TS-4
0	2.0	3.9	6.1	9.2	8.1	11.7	11.7	9.5

Нетрудно видеть, что появление аксиальных заместителей заметно увеличивает энергию обоих конформеров 1,4-Т, и особенно формы К*. Соответственно этому растет энергия и переходных состояний ТЅ. Формы ТЅ-2 и ТЅ-3 практически вырождены по энергии, хотя принадлежат принципиально различным конформациям. В целом равновесие конфомационной изомеризации иона 2а должно быть заметно смещено влево из-за очевидной невыгодности всех остальных локальных минимумов на ППЭ. Необходимо также отметить, что вероятность прямого внутримолекулярного протонного обмена между атомами кислорода кольца в конформерах 2а и 3а весьма мала из-за сравнительно высокого значения барьера активации, составляющего по данным STO-3G 33.4 ккал/моль.

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Более вероятна прямая конформационная изомеризация: $2a \leftrightarrow 2e$, барьер которой в рамках приближения STO-3G составляет только 5.3 ккал/моль.

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_4C
 CH_3
 CH_3

Таким образом, анализ относительной стабильности оксониевых ионов *цис-*2,4-диметил-1,3-диоксана, формируемых на начальной стадии гетеролитических реакций, указывает на преимущественное образование иона с аксиальным протоном у атома кислорода О-3.

Литература

- 1. Итоги науки и техники. Технология органических веществ. Т.5. Химия и технология 1,3-диоксациклоалканов / Д.Л. Рахманкулов, Р.А. Караханов, С.С. Злотский и др. // М.: ВИ-НИТИ, 1979. 288 с.
- 2. Кузнецов В.В. Автореф. дисс. докт. хим. наук. Уфа, 2002. 47 с.
- 3. Кузнецов В.В. // Журн. орг. химии. 2000. Т.36, вып. 7. С.1097-1098.
- 4. Кузнецов В.В. // Теорет. эксперим. химия. 2000. Т.36, № 3. С.159-161.
- 5. Кузнецов В.В. // Изв. АН. Сер. хим. 2005. № 7. С.1499-1507.
- 6. Курамшина А.Е., Мазитова Е.Г., Кузнецов В.В. // Современные наукоемкие технологии 2006. №2. C.80-82.
- 7. Мазитова Е.Г., Курамшина А.Е., Кузнецов В.В. // Журн. орг. химии. 2004. Т.40, вып.4. С.615-616.
- 8. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. // Современные наукоемкие технологии . 2007. № 12. С.164-166.
- 9. Кузнецов В.В., Курамшина А.Е. // Информационно-вычислительные технологии в решении фундаментальных проблем и прикладных научных задач. Сборник материалов. Москва, 2007. С.10.
- 10. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. // Современные наукоемкие технологии 2008. № 2. С.147-149.
- 11. HyperChem 5.02. Trial version. www.hyper.com.
- 12. Внутреннее вращение молекул / под ред. В.Дж. Орвилл-Томаса. М.: Мир, 1975. С.355.