ЭФФЕКТИВНОСТЬ НОВЫХ ОКСИГУМИНОВЫХ СТИМУЛЯТОРОВ РОСТА НА ОСНОВЕ ТОРФА

Ефанов М.В., Латкин А.А., Черненко П.П., Шотт П.Р.

ГОУ ВПО «Алтайский государственный университет»

Барнаул, Россия

EFFICIENCY NEW OXIHUMIC STIMULATORS OF GROWTH ON THE BASIS OF PEAT

Efanov M.V., Latkin A.A., Chernenko P.P., Schott P.R.

Altai state university

Barnaul, Russia

Комплексное использование торфа — это одна из актуальных задач современной торфяной промышленности. [1]. Значительный интерес в прикладном плане представляют оксигуминовые вещества, которые рекомендованы для применения в качестве гуминовых стимуляторов роста, удобрений и поверхностно - активных веществ. Основной метод их получения — окисление торфа в водно-щелочной среде, заключающийся в обработке торфа пероксидом водорода в водном растворе NaOH при 100 — 150 °C в автоклавах под давлением [2]. Эти способы имеют существенные технологические недостатки: сложность и длительность процесса, низкий выход продуктов при довольно значительных расходах окислителя и щелочи. В работах Наумовой Г.В. с сотр. [2—4] предложено получать оксигуматы из торфа путем его окисления пероксидом водорода в щелочной среде в сравнительно жестких условиях при 125 °C в автоклаве в течение 4 часов в присутствии солей кобальта и меди в качестве катализаторов. Такие способы позволяют получать гуминовые удобрения с выходом 75 — 93 % от органической массы торфа, содержащие связанные кобальт и медь в качестве микроэлементов.

Одним из перспективных методов активации торфа для его химического модифицирования является кавитационная обработка в водной среде в кавитационных аппаратах [5]. Торф, подвергнутый кавитационной обработке в различных средах, изменяет свой химический состав, что приводит к его активации. Однако работ по систематическому изучению окисления торфа в различных средах в условиях кавитационной обработки в литературе не обнаружено. Нами разработан способ получения оксигуминовых препаратов на основе торфа и получены жидкие удобрения, содержащие до 86 г/л гуминовых и до 64 г/л фульвокислот [6]. Целью настоящей работы является исследование влияния полученных препаратов на рост растений пшеницы.

В таблице 1 приведены условия получения и состав полученных жидких оксигуминовых препаратов. Содержание углерода гуминовых веществ определяли фотоколориметрически по методу Тюрина после экстракции гуминовых веществ из торфа щелочным раствором пирофосфата натрия по ГОСТ 9517-94. Содержание фульвокислот определяли по разности между общим содержанием гуминовых веществ и содержанием гуминовых кислот.

 Таблица 1. Состав жидких оксигуминовых препаратов, полученных при

 окислении торфа пероксидом водорода

Образец	Концентрация	Содержание	Содержание	Содержание углерода	
	раствора щелочи,	общего углерода	углерода	фульвокислот, г/л	
	%	(гуминовых и	гуминовых		
		фульвокислот), г/л	кислот, г/л		
Исходный	_	80.5	41.2	39.3	
торф					
1	8	97.4	86.2	11.2	

Для изучения ростостимулирующей активности оксигуматов из торфа проводили определение всхожести семян яровой пшеницы сорта «Алтайский простор» путем их замачивание в чашках Петри в 0.01 и 0.03 % растворах, содержащих образец № 7 оксигумата. В качестве контроля служили семена, проращенные на дистиллированной воде. Данные приведены в таблице 2.

Таблица 2. Результаты испытаний по влиянию полученного оксигумата натрия на всхожесть семян яровой пшеницы*

Вариант	Всхожесть, %					
	опыт 1	опыт 2	опыт 3	среднее		
Контроль (без стимулятора)	87	89	88	88		
Оксигумат 0.01 %	96	97	98	97		
Оксигумат 0.03 %	99	99	99	99		

^{*} образец № 1 оксигумата натрия.

Как видно из результатов, представленных в таблице 2, добавки оксигумата натрия из торфа в концентрации 0.01 и 0.03 % приводят к увеличению всхожести яровой пшеницы по

сравнению с контролем в среднем на 10 - 12.5 %. В таблице 3 приведены результаты полевых испытаний полученных стимуляторов при внесении сульфата аммония под яровую пшеницу сорта «Алтайская-100».

Таблица 3. Влияние оксигуминовых стимуляторов роста на урожайность яровой пшеницы сорта Алтайская-100, ц/га

Основное удобрение (фактор	Подкормка в фазу колошения		Средние A (HCP $_{05} = 9.1$)			
A)	(фактор В)					
	без подкормки	подкормка				
Без удобрений (контроль)	17.0	18.1	17.5			
Сульфат аммония (N ₅₀)	21.9	23.4	22.6			
Средние В (НСР ₀₅ = 5.1)	19.5	20.8	20.1			
HCP_{05} для частных различий: $A = 12.8; B = 10.2$						

Таким образом, установлено, что полученные продукты окисления торфа пероксидом водорода в водно-щелочной среде в условиях кавитационной обработки являются эффективными стимуляторами роста растений.

Список литературы

- 1. Горовая А.И., Орлов Д.С., Щербенко О.В. Гуминовые вещества. Киев: Наукова думка, 1995. 304с.
- 2. Наумова Г.В. Торф в биотехнологии. Минск: Наука и техника, 1987. 158с.
- 3. Наумова Г.В., Косоногова Л.В., Кособокова Н.В. и др. Способ получения средства защиты растений от болезней. // А.с. СССР № 1624726. Б.И. 1991. № 22.
- 4. Наумова Г.В., Косоногова Л.В., Жмакова Н.А., Овчинникова Т.Ф. // Химия твердого топлива. 1995. № 2. С. 82 87.
- 5. Петраков А.Д., Радченко С.М., Яковлев О.П. и др. Способ получения органоминеральных удобрений и технологическая линия для его осуществления. // Патент РФ № 2296731. Б.И. 2007. № 10.
- Ефанов М.В., Галочкин А.И., Петраков А.Д., Черненко П.П., Латкин А.А. Способ получения оксигуматов из торфа. // Заявка РФ № 2007134557. МПК С 05 F 11/02. Приоритет от 17.09. 2007.