¹Белёва С. В., ¹Вершинина Е. Ю., ¹ Корчёмкина Е. В., ¹Сухова А. Ю., ¹Циркин В. И., ²Проказова Н.В., ¹Костяев А.А,

ВЛИЯНИЕ АДРЕНАЛИНА И ЛИЗОФОСФАТИДИЛХОЛИНА (ЛФХ) НА ОСМОТИЧЕСКУЮ РЕЗИСТЕНТНОСТЬ ЭРИТРОЦИТОВ (ОРЭ)

¹Кировская государственная медицинская академии, ²Институт экспериментальной кардиологии РКНПК (Москва),

e-mail: tsirkin@list.ru

Эритроциты человека содержат 2 типа адренорецепторов (AP) - β -AP и α -AP [1-3]. Полагают, что при активации β -AP OPЭ повышается [1-3], а при активации α -AP — снижается [1]. Известно [5], что в клеточных мембранах, включая эритроцитарные, под влиянием фосфолипазы A_2 образуется $\Lambda\Phi X$. Предполагают [5-7], что он играет важную роль в регуляции функций клеток. Цель работы — оценить влияние $\Lambda\Phi X$ на способность адреналина изменять OPЭ.

Исследовали венозную кровь 22 небеременных женщин (28,3±7,5 лет). Ее получали в объеме 4 мл и смешивали с 1 мл 5% раствора цитрата натрия. Оценку ОРЭ проводили через 4-6 часов по Идельсону Л. И. (1974) [4] в нашей модификации, заключающейся в замене раствора NaCl с 0,40% на 0,42% (при этом число гемолизированных эритроцитов приближается к 50%). В 3 ряда пробирок (по 6-9 в каждом) вносили по 0,1 мл крови; в 1-й ряд добавляли по 0,1 мл адреналина (в конечной концентрации от 10⁻¹³ до 10⁻⁵г/мл), во 2-й - по 0,1 мл ЛФХ (от 10⁻¹³ до 10⁻⁵г/мл), а в 3-й - 0,1 мл адреналина (10⁻¹³ -10⁻⁵г/мл) и 0,1 мл ЛФХ (10⁻⁶ г/мл). Через 5 минут во все пробирки добавляли 0,42% раствор NaCl (до 5 мл); их выдерживали 30 мин. при 18-20°C, центрифугировали (5 мин, 2000 об/мин) при 18-20°C на центрифуге ОПн-8УХЛ4.2., измеряли оптическую плотность надосадочной жидкости на КФК-2 и рассчитывали процент гемолизированных эритроцитов. Различия оценивали по критерию Стьюдента и Манна-Уитни, считая их достоверными при p<0,05.

Установлено, что в контроле (0,1 мл крови + 4,9 мл 0,42% раствора NaCl) число гемолизированных эритроцитов составило 64,1±7,0% от общего их числа. Адреналин (табл.) в концентрациях 10^{-13} , 10^{-12} и 10^{-11} г/мл повышал ОРЭ, но степень этого повышения не зависела от его концентрации в среде, что указывает на его неспецифичность. В концентрациях 10^{-10} - 10^{-5} г/мл адреналин вызвал (за счет активации β-АР?) более выраженное повышение OPЭ, степень которого для концентраций 10^{-10} - 10^{-7} г/мл возрастала с их увеличением; для концентраций 10^{-6} и 10^{-5} г/мл она уменьшалась (за счет активации α -AP?). В концентрациях $10^{\text{-}13}$, $10^{\text{-}12}$ и $10^{\text{-}11}$ г/мл Л Φ X повышал ОРЭ, но степень этого повышения не зависела от его концентрации в среде, что также указывает на его неспецифичность. В концентрациях 10^{-10} - 10^{-5} г/мл ЛФХ незначительно (и слабее, чем адреналин) повышал ОРЭ (за счет активации специфических орфановых рецепторов, открытых [7] ?). При совместном действии с адреналином ЛФХ (10-6 г/мл) увеличивал его способность (достоверно - для концентраций 10^{-10} , 10^{-9} и 10^{-6} г/мл) повышать ОРЭ. Это можно объяснить тем, что ЛФХ блокирует α-АР (при активации которых адреналин снижает ОРЭ), не влияя на β-АР, активация которых повышает ОРЭ. Результаты исследования подтверждают представление [5-7] о способности ЛФХ регулировать деятельность клеток.

Таблица. Число эритроцитов (М±m), гемолизированных в 0,42% растворе NaCl (в % к контролю) при наличии в среде адреналина (10^{-13} - 10^{-5} г/мл, 1), ЛФХ (10^{-13} - 10^{-5} г/мл, 2) и адреналина (10^{-13} - 10^{-5} г/мл) совместно с ЛФХ (10^{-6} г/мл, 3)

Концент-	Число	Л працалиц	ЛФХ	Адреналин +
рация,	наблю	Адреналин	ЛФЛ	ЛФХ
г/мл	дений	1	2	3
10 ⁻¹³	10	54,0±7,3*	57,7±9,1*	49,8±7,7*
10 ⁻¹²	10	59,2±6,2*	53,9±8,8*	46,8±7,4*
10-11	10	56,5±6,8*	59,5±8,5*	42,7±6,5*
10 ⁻¹⁰	22	48,5±6,1*	51,2±6,1*	32,8±4,9*bc

10-9	22	50,0±5,5*	51,7±5,7*	32,7±5,3*abc
10-8	22	43,5±5,8*	52,0±5,6*	36,5±5,0*
10 ⁻⁷	12	34,0±6,1*	47,4±7,9*	34,4±7,6*
10 ⁻⁶	19	43,7±5,9*	52,0±6,0*	32,5±5,4*bc
10 ⁻⁵	12	49,8±8,1*	50,4±6,4*	31,8±7,5*

^{*-}различия с контролем достоверны, p<0,05, по критерию Стьюдента; а, b и с - различия с 1 (а), 2 (b) и с ЛФХ в концентрации 10⁻⁶ г/мл (с) достоверны (p<0,05) по критерию Манна-Уитни.

Литература. [1]. Бабин А. П. и др.// Гемореология в микро- и макроциркуляции: Мат. межд. конф. Ярославль, 2005. С. 196. [2]. Длусская И. Г. и др. // Авиакосмич. и экол. мед. 1997. № 5. С. 64-70. [3]. Кленова Н.А., Власов Д.Н. //Актуальные проблемы медицины, биологии и экологии. Т. 2. Томск. 2003. С282-283. [4]. Меньшиков В.В. Лабораторные методы исследования в клинике. М., 1987. С. 119- 120. [5]. Проказова Н.В. и др. //Биохимия. 1998.Т.63, в. 1. С. 38 – 46. [6]. Ока Н. et al. // Arterioscler. Thromb. Vasc. Biol. 2000. V. 20. P.244-250. [7]. Rikitake Y. et al. // ibid. 2002, V. 22. P.2049- 2053.