ИММОБИЛИЗАЦИЯ МИКРООРГАНИЗМОВ АКТИВНОГО ИЛА НА МАГНИТНЫЕ НОСИТЕЛИ.

*Потапова Л. В., Владимцева И. В., Колотова О. В. Волгоградский государственный технический университет *Волгоград, Россия

pebg@vstu.ru, lora197911@rambler.ru

В последние годы в некоторых областях биотехнологии используются микроорганизмы, иммобилизованные в магнитные носители. Преимуществом этого является простота управления микроорганизмами с помощью магнитного поля разной напряженности, быстрота сепарации иммобилизованных клеток [1]. Использование иммобилизованных в магнитные носители микроорганизмов для очистки сточных вод является новой и неизученной областью исследований. Применение магнитных носителей для иммобилизации микроорганизмов неразрывно связано с вопросом воздействия магнитных полей на биологические объекты, осуществляющие биодеградацию загрязнений сточных вод.

Целью работы явилась разработка методов получения и применения иммобилизованных в магнитные носители микроорганизмов для очистки сточных вод.

Объектом исследования явилась выделенная нами из активного ила аэротенка чистая культура Pseudomonas picketti – микроорганизма, преобладающего в активном иле очистных сооружений острова Голодный Волгоградской области.

В качестве магнитного носителя для Р.ріскеttі использовали сорбент, приготовленный по методике разработанной Ставропольским НИПЧИ [2]. Способ получения сорбента включал активацию носителя и ковалентное связывание с ним биологического лиганда. В качестве носителя применяли смесь алюмосиликата с магнитным порошком, который модифицировали 0,3-0,4%-ным раствором полиглюкина и после высушивания активировали вторичным алкилсульфатом натрия.

Все используемые по данному способу препараты доступны и недороги, способ обеспечивает простую и достаточно экологически безопасную технологию получения сорбентов, в том числе и с магнитными свойствами.

В процессе исследования были подобраны оптимальные условия иммобилизации клеток – временя иммобилизации и температурный режим иммобилизации. Нами была изучена возможность иммобилизации P.picketti при температуре 5, 21, 37, 41°C. При изучении времени иммобилизации была апробирована длительность 1, 2, 4, 6 и 18 ч. Результаты экспериментов учитывали фотоколориметрическим методом по измерению

оптической плотности после односуточного культивирования системы иммобилизованных клеток в экспериментально подобранной жидкой питательной среде. Контролем служили интактные клетки, культивированные в аналогичных условиях. Результаты экспериментов представлены в таблице 1.

Результаты, представленные в таблице, свидетельствуют, что оптимальными условиями для проведения иммобилизации P.picketti являются температура 37⁰С и длительность иммобилизации 2 часа.

Таблица 1 Результаты подбора оптимальных условий иммобилизации клеток P.picketti

Длительность	Температура,	Концентрация	% прироста
иммобилизации,	${}^{0}C$	биомассы,	биомассы
час		х10 ⁹ м.к./мл	
	5	0,01	1,30
1	21	0,65	52
	37	1,05	64
	41	0	0
	5	0,01	1,30
2	21	1,75	104
	37	2,40	112
	41	0	0
	5	0	0
4	21	2,00	86,11
	37	1,50	70,83
	41	0	0
	5	0	0
6	21	1,90	80,65
	37	1,25	65,23
	41	0	0
	5	0	0
16	21	1,70	77,78
	37	0,01	1,30
	41	0	0

Таким образом, в процессе экспериментальных исследований была разработана методика иммобилизации микроорганизмов P.picketti в алюмосиликатные магнитные сорбенты и подобраны временные и температурные условия иммобилизации микробных клеток.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Скрябин Г.К., Кощеенко К.А. Иммобилизованные клетки микроорганизмов $/\!/$ Биотехнология. 1984. С.70-77.
- 2. Ефременко В.И. Магносорбенты в микробиологических исследованиях. Ставрополь: Ставрополье, 1996. – 131с.