ИЗУЧЕНИЕ ПОВЕРХНОСТИ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ 2-МЕТИЛ-1,3-ДИОКСАНА МЕТОДОМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

А.Е. Курамшина, С.А. Бочкор, В.В. Кузнецов

Уфимский государственный нефтяной технический университет Уфа, Россия

kuzmaggy@mail.ru

Интерес к 1,3-диоксанам, связанный с особенностями строения [1], делает актуальным изучение поверхности потенциальной энергии (ППЭ) молекул этих веществ методами компьютерного моделирования [2-7]. Настоящая работа посвящена исследованию характера конформационных превращений 2-метил-1,3-диоксана методом Хартри-Фока с помощью полуэмпирических (АМ1 и РМ3), а также неэмпирических (STO-3G и 6-31G**) квантово-химических приближений в рамках программного обеспечения НурегСhem [8] в условиях, моделирующих поведение молекул этого вещества в газовой фазе.

Известно, что главному минимуму на ППЭ 1,3-диоксанов отвечает конформер *кресла* с преимущественно экваториальной ориентацией алкильного заместителя (Ke). Данные спектроскопии ЯМР ¹Н однозначно указывают на пребывание молекул 2-метил-1,3-диоксана при комнатной температуре в преимущественной конформации Ke с достаточно большой свободной энергией конформационного перехода $Ke \leftrightarrow Ka$ [9].

$$\Delta G^0 = 3.0 - 4.5$$
 ккал/моль Ka CH_3

Нами выявлена общая картина конформационных превращений, а также характер промежуточных минимумов и переходных состояний исследуемого соединения (табл.).

Энергетические параметры инверсии KeÛ Ka 2-метил-1,3-диоксана (ккал/моль)

Методы	Минимумы, ΔΕ				Максимумы, $\Delta ext{E}^{ eq}$		
	Ке	Ка	1,4-T	2,5-T	ПС-1	ПС-2	ПС-3
AM1	0.3	0	2.6	2.5	3.8	2.7	2.8
PM3	1.6	0	-	3.4	3.4	5.0	-
STO-3G	0	3.7	4.7	4.7	8.6	5.0	12.5
6-31G**	0	4.8	5.5	5.2	9.3	10.6	5.8

ПЕРЕХОДНЫЕ СОСТОЯНИЯ

* Для РМЗ не реализуется.

Полученные данные свидетельствуют о двух маршрутах конформационной изомеризации $Ke \leftrightarrow Ka$, аналогичных наблюдаемым для незамещенного 1,3-диоксана [4] (в PM3 реализуется только направление, включающее форму 2,5-T). Формы I,4-T и 2,5-T превращаются друг в друга через максимум ПС-3 (в STO-3G – ПС-2). Основному максимуму на ППЭ отвечают формы $co\phi$ ы (ПС-1 в приближении AM1 и PM3, а также ПС-2 в приближении 6-31G** и ПС-3 в приближении STO-3G). Однако согласно данных расчета оба маршрута практически равновероятны. Результаты 6-31G** относительно неплохо воспроизводят экспериментальное различие в энергии между конформерами Ke и Ka (ΔG^0 составляет 4.07 ± 0.46 ккал/моль в пользу Ke [9]).

В то же время экспериментальная величина ΔG^{\neq} процесса конформационной изомеризации этого соединения неизвестна; значение ΔE^{\neq} (10.6 ккал/моль, ПС-2 в 6-31G**) близко к экспериментальному барьеру инверсии в незамещенном 1,3-диоксане (9.0-10.1 ккал/моль [9]). Следует также отметить несоответствие глобального минимума, рассчитанного в приближениях АМ1 и РМ3 (форма Ka), данным эксперимента, по всей видимости, из-за несовершенства параметризации этих методов.

Литература

- 1. Рахманкулов Д.Л., Караханов Р.А., Злотский С.С., Кантор Е.А., Имашев У.Б., Сыркин А.М. Итоги науки и техники. Технология органических веществ. Т.5. Химия и технология 1,3-диоксациклоалканов / Д.Л. // М.: ВИ-НИТИ, 1979. 288 с.
- 2. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. // Третья Всероссийская научная internet-конференция. Тамбов, 2001. Вып.14. С.9.
- 3. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. // Четвертая Всероссийская научная internet-конференция. Тамбов, 2002. Вып.18. С.54.
- 4. Курамшина А.Е., Бочкор С.А., Кузнецов В.В. // Баш. хим. журн. -2004. -1.11, № 1.-C.81.
- 5. Мазитова Е.Г., Курамшина А.Е., Кузнецов В.В. // Журн. орг. химии. Т.40, вып. 4. С.615.

- 6. Шаимова А.Х., Курамшина А.Е., Кузнецов В.В. // Материалы 54-й научнотехнической конференции студентов, аспирантов и молодых ученых. Уфа. УГНТУ, 2003. Ч.1. С.169.
- 7. Сарварова Г.С., Курамшина А.Е.. Бочкор С.А., Кузнецов В.В. // Интеграция науки и высшего образования в области органической и биоорганической химии и механики многофазных систем. Материалы II Всероссийской научной internet-конференции. Уфа. Реактив, 2003. С.135.
- 8. HyperChem 5.02. Trial version. www.hyper.com.
- 9. Внутреннее вращение молекул / под ред. В.Дж. Орвилл-Томаса. М.: Мир, 1975. С.355.