Режимы диффузии и фрактальный свободный объем в твердофазных полимерах Козлов Г.В., Долбин И.В.

Научно-исследовательский институт прикладной математики и автоматизации КБНЦ РАН

Процессы переноса на фрактальных (самоподобных) объектах называются странными или аномальными. Среднеквадратичное удаление блуждающей частицы $\left\langle \stackrel{+}{r}^2 \right\rangle$ описывается так [1]:

где D – обобщенный коэффициент переноса, t – время, μ - показатель.

В узком смысле слова термин «странный перенос» предполагает нелинейную ($\mu \neq 1$) зависимость $\binom{+2}{r}$ от t. Величина μ варьируется следующим образом [1]:

$$0 \le \mu \le 2. \tag{2}$$

При 0≤ μ <1 говорят о субдиффузионных процессах переноса, при 1< μ ≤2 – о супердиффузионных процессах. Также было введено понятие о супербаллистическом процессе, соответствующем условию μ >2. По-казатель μ связан с показателем Херста H так [1]:

$$\mu = 2H. \tag{3}$$

В свою очередь, величина H зависит от структуры полимера, характеризуемой ее фрактальной размерностью $d_f[2]$:

$$H = 3 - d_f. (4)$$

И наконец, размерность траектории блуждания частицы-диффузанта d_w определяется следующим образом [1]:

$$d_w = H^{-1}, \ (d_w \ge 1).$$
 (5)

Очевидно, что изменение режима переноса (диффузии) определяет большое (на порядки величины) изменение коэффициента диффузии. Поэтому важно установить взаимосвязь между структурой полимера и режимом диффузии. Для этой цели будут использованы экспериментальные зависимости коэффици-

 $D_{CH_4} \times 10^7$, cm²/c $d_w f_c^{\phi p}$ 15 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,7

Рис. 1. Зависимости D_{CH_4} (1), d_w (2) и $f_c^{\phi p}$ (3) от T_c . 4 — размерность броуновского движения, 5 — порог перколяции по схеме перекрывающихся сфер.

 $V_h^{\phi p} = \frac{\pi^{D_f/2} r_h^{D_f}}{\left(D_f/2\right)!} \,, \tag{6}$

где r_h – радиус микрополости свободного объема.

ента диффузии по метану D_{CH_4} от температуры стеклования T_c для 11 полимеров [3].

На рис. 1 приведена зависимость D_{CH_4} (T_c) для указанных 11 полимеров. Как можно видеть, при T_c >440 К наблюдается резкий рост D_{CH_4} по мере увеличения T_c в довольно узком интервале температур (440-540 К). Кроме того, при $T_c \approx 440$ К величина d_w достигает значения случайного броуновского движения (d_w =2) и при дальнейшем росте T_c d_w <2, т.е., происходит переход к баллистическим траекториям.

Получить объяснение этим изменениям процесса переноса можно в рамках фрактальной теории свободного объема [4]. Как показано ранее [4, 5], представление микрополостей флуктуационного свободного объема, через которые реализуется диффузия в полимерах, в виде трехмерной сферы является упрощенным и более точно рассматривать эту микрополость как D_f -мерную сферу (D_f — размерность областей локализации избыточной энергии, равная $1+(3-d_f)^{-1}$). В такой трактовке объем микрополости $V_b^{\phi p}$ дается следующим образом [5]:

Если обозначить объем микрополости в трехмерном представлении как V_h , относительный фрактальный свободный объем $f_c^{\phi p}$ можно рассчитать так [5]:

$$f_c^{\phi p} = f_c \frac{V_h^{\phi p}}{V_h} \,, \tag{7}$$

где относительную долю флуктуационного свободного объема f_c можно принять равной 0,060 для твердофазных полимеров [5].

Зависимость рассчитанной таким образом величины $f_c^{\phi p}$ от T_c показана на рис. 1 (кривая 3). Как и следовало ожидать, наблюдается увеличение $f_c^{\phi p}$ по мере роста T_c и при T_c =440 К величина $f_c^{\phi p}$ достигает порога перколяции в предположении схемы перекрывающихся сфер (микрополостей), равного 0,34±0,01 [4]. Иначе говоря, согласно теории перколяции при T_c =440 К в полимерной мембране формируется каркас соединенных между собой микрополостей свободного объема, что облегчает условия диффузии молекул газа-диффузанта, определяет критерий d_w <1 и резко повышает коэффициент диффузии D_{CH_4} .

Необходимо дать пояснения относительно абсолютных величин $f_c^{\phi p}$, которые при расчете по уравнению (9) могут превышать 1,0, что на первый взгляд представляется физическим абсурдом. На самом деле это означает локальный «всплеск» величины $f_c^{\phi p}$ в пределах флуктуаций усредненной величины f_c , когда $V_h^{\phi p} > 16,7V_h$. С учетом большого общего количества микрополостей ($\sim 10^{28} \, \mathrm{m}^{-3}$) такой «всплеск» для ограниченного их числа оставляет величину f_c практически неизменной, но может сильно влиять на локальные свойства полимера на молекулярном уровне.

Таким образом, изложенные выше результаты предполагают, что переход от субдиффузионного режима к супердиффузионному обусловлен структурным фактором – образованием непрерывного перколяционного каркаса микрополостей. При этом на микроскопическом уровне процесс выглядит скорее как баллистический, чем диффузионный (μ >1, H>0,5 и d_w <2) [1]. Для супербаллистического процесса (μ >2, H>1) согласно (4) получим d_f <2. Из уравнения, связывающего d_f и коэффициент Пуассона ν

$$d_f = 2(1+v) \tag{8}$$

определим, что в этом случае v<0. Как известно, отрицательные значения v типичны для пористых твердых тел. Следовательно, супербаллистический перенос может быть реализован только в пористых полимерных мембранах.

Список литературы

- 1. Зеленый Л.М., Милованов А.В. Фрактальная топология и странная кинетика: от теории перколяции к проблемам космической электродинамики. Успехи физических наук, 2004, т. 174, № 8, с. 809-852.
- 2. Шогенов В.Х., Ахкубеков А.А., Ахкубеков Р.А. Метод дробного дифференцирования в теории броуновского движения. Известия ВУЗов. Северо-Кавказский регион, 2004, № 1, с. 46-50.
- 3. Волков В.В., Гольданский А.В., Дургарьян С.Г., Онищук В.А., Шанторович В.П., Ямпольский Ю.П. Изучение методом аннигиляции позитронов микроструктуры полимеров и ее связь с их диффузионными свойствами. Высокомолекулярные соединения А, 1987, т. 29, № 1, с. 192-197.
- 4. Kozlov G.V., Zaikov G.E. Structure of the Polymer Amorphous State. Utrecht-Boston, Brill Academic Publishers, 2004, 465 p.
- 5. Козлов Г.В., Сандитов Д.С., Липатов Ю.С. Структурный анализ флуктуационного свободного обема в аморфном состоянии полимеров. В кн.: Успехи в области физико-химии полимеров. М., Химия, 2004, с. 412-474.