РЕСУРСНО-ВРЕМЕННОЙ АНАЛИЗ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ НА ОСНОВЕ ЦИКЛИЧЕСКИХ АЛЬТЕРНАТИВНЫХ СЕТЕВЫХ МОДЕЛЕЙ

*Антамошкина Е.А., Золотарев М.Ю.

ФГУП ЦКБ «Геофизика»

Красноярск, Россия

*nii_suvpt@wave.krs.ru

Среди задач объемно-календарного планирования и управления на цеховом и межцеховом уровнях на промышленных предприятиях выделим следующие задачи:

- 1. Оперативное планирование расчет производственных расписаний, основанных на специфике изделий и технологиях производства.
- 2. Контроль состояния и распределение ресурсов управление ресурсами производства: технологическим оборудованием, материалами, персоналом, документацией, инструментами, методиками работ [3].

Мы рассматриваем проблему календарного планирования производственного процесса, как комплекса взаимосвязанных работ в условиях риска и неопределенности при ограниченности некоторых ресурсов или наличия требований к динамике их потребления (например, требование равномерности).

Так называемая циклическая альтернативная сетевая модель была предложена Воропаевым В.И. Отличием ЦАСМ от моделей, реализованных в большинстве существующих программных продуктов, является возможность моделировать протекание производственного процесса по альтернативному пути, в том числе циклическое повторение (конечное число циклов) части процесса. При использовании ЦАСМ производится имитационное моделирование производственного процесса. Полученную модель можно "проиграть" во времени и получить статистику происходящих процессов так, как это было бы в реальности. В имитационной модели изменения процесса и данных ассоциируются с событиями. "Проигрывание" модели заключается в последовательном переходе от одного события к другому [2].

Исходными данными для составления производственного расписания с одновременным распределением ресурсов являются:

- 1. Комплекс взаимосвязанных работ.
- 2. Статистические данные (если они имеются) об отбраковках, отказах и т.д. Если таковых данных нет, то данные генерируются на основе экспертных оценок. Возможен комбинированный способ задания. Пункты 1 и 2 являются основой для создания матрицы смежности работ $A = \left\{ p_{ij} \right\}$ [1].
- 3. Нормировочные данные на каждую из производственных работ (длительность работы, трудоемкость работы и т.д.).
- 4. Объемы каждого пула возобновляемых ресурсов (персонал и оборудование). Рабочие (оборудование) одного профиля объединяются в так называемые пулы ресурсов. На каждой работе требуется ресурсы лишь из одного пула.

Итак, некоторый производственный процесс представляется циклической альтернативной сетевой моделью $G(\Omega,A)$. Ω - множество событий производственного процесса. $A = \left\{p_{ij}\right\}$ - матрица смежности работ. $0 \le p_{ij} \le 1$, причем $p_{ij} = 1$ задает детерминированную дугу (i,j), а $0 < p_{ij} < 1$ определяет альтернативное событие i, которое с вероятностью p_{ij} связано дугой с событием j.

Пусть r_{ij}^k – количество ресурса из k-го пула возобновляемых ресурсов на работе $(i,j),\ _{W_{ij}^k}$ – трудоемкость работы (i,j), потребляющей ресурс из пула $k,\ V^k=const$ -

объем k-го пула возобновляемых ресурсов, $k \in K$. Здесь K – множество пулов возобновляемых ресурсов.

В соответствии с заданными распределениями и алгоритмом, описанном в [1], можно получить p-квантильные оценки величин нормировочных данных: $W_p(y_{ij})$ - p-квантильная оценка длительности работы (i,j), $W_p(w_{ij})$ - p-квантильная оценка трудоемкости работы (i,j). Если нормировочные данные содержат не длительность работ, а их трудоемкость, то длительность y_{ij} работы (i,j) можно вычислить следующим образом: $y_{ij} = \frac{w_{ij}^k}{r_{ij}^k}$. Соответственно, $W_p(y_{ij}) = \frac{W_p(w_{ij}^k)}{r_{ij}^k}$ - p-квантильная оценка длительности работы (i,j), потребляющей ресурс из пула k.

Обозначим $F_t^k = \sum_{(i,j) \in e_t^k} r_{ij}^k$ — потребность в ресурсе из пула k в момент времени t, e^k — множество работ, потребляющих ресурс из пула k, а e_t^k — множество работ, потребляющих ресурс k в момент времени t ($e^k = \bigcup e_t^k$).

Математическая модель задачи распределения ограниченных ресурсов на ЦАСМ и минимизации времени выполнения производственного процесса имеет вид:

Найти такие сроки начала и окончания работ (i,j) $T_i^* \in [W_p(T_i^p), W(T_i^n)]$ и $T_j^* \in [W_p(T_j^p), W(T_j^n)]$, а также такое распределение возобновляемых ресурсов по времени между работами, что

$$T_j^* - T_i^* \ge W_p(y_{ij})$$
, для всех дуг (i, j) ; (1)

$$l_i \le T_i^* \le L_i$$
, для некоторых событий; (2)

$$V^k \ge F_t^k$$
, для всех t и k ; (3)

$$T_n^* \to \min$$
 . (4)

Здесь $T_i^{\ p}$ и $T_i^{\ n}$ - ранний и поздний сроки совершения события i .

Соотношения (1) задают взаимосвязи между всеми событиями сети, включая дугисвязи, дуги-работы и абсолютные временные ограничения.

Соотношения (2) задают абсолютные ограничения на момент реализации некоторых контрольных событий i. Здесь l_i и L_i - самый ранний и самый поздний сроки наступления i . Событием i могут быть начало или завершение какой-нибудь работы.

Ограничение (3) учитывает ограниченность возобновляемых ресурсов, т.е. в каждый момент времени потребность в ресурсе из пула k не должна объема данного пула.

Целевая функция (4) обеспечивает построение расписания производственного процесса с минимальным временем.

Алгоритм решения поставленной задачи схож с алгоритмоу, описанном в [1].

- 1. Воропаев В.И., Гельруд Я.Д. Циклические альтернативные сетевые модели и их использование при управлении проектами [Электронный ресурс]. Режим доступа: http://www.sovnet.ru/pages/casm1.rar.
- 2. Маклаков С. Имитационное моделирование с Arena [Электронный ресурс]. Режим доступа: http://www.interface.ru/fset.asp?Url=/sysmod/ar1.htm.
- 3. Системы оперативного управления производством [Электронный ресурс]. Режим доступа: http://www.mesa.ru/