Компьютерное моделирование на атомном уровне нанокристаллических металлов.

Atomistic simulations in nanocrystalline metals.

М. 3. Борисова – вед. инженер, С.П. Яковлева – ктн., рук. отдела Институт физико-технических проблем Севера СО РАН

Нанокристаллические металлические материалы обладают рядом уникальных свойств. Повышенные прочностные свойства наряду с пластичности материалов ЭТИХ дают ИМ преимущество перед обычными крупнозернистыми материалами. обусловлено масштабными эффектами, вызванным малым размером зерна и значительной долей границ зерен. В то время как в поликристаллических материалах, с размером зерна порядка нескольких мкм, пластическая деформация имеет дислокационную природу, в наноматериалах плотность дислокаций в объеме зерна крайне низка и большую роль при деформации играет зернограничная фаза.

Для понимания элементарных актов и механизмов развития пластической деформации в нанокристаллических материалах возможно применение компьютерного моделирования на атомном уровне высокой размерности. Для чистых материалов, для которых известны значения межатомного потенциала. проводиться молекулярно-динамическое компьютерное моделирование, рассматривающее структуру на атомном уровне. Образцы разрабатываются с использованием стохастической процедуры, другими словами объем моделируемой ячейки заполняется нанозернами произвольным расположением и ориентацией, в соответствии с конструкцией Воронова. Образцы содержат от 6*106 атомов, в зависимости от размера зерна (тах. 20 нм) и от числа зерен (тах. 125 зерен). При моделировании механических свойств наноматериалов согласуются внутризеренные (дислокационные) И межзеренные (зернограничное проскальзывание) механизмы деформации. При малых размерах зерна дислокации не могут войти в объем зерна из-за больших энергетических затрат, связанных с преодолением сил линейного натяжения. В образцах с размером зерен 12 нм и выше наблюдается аккомодационный механизм деформации: эмиссия и скольжение дислокаций. С увеличением размера зерна происходит смена основного механизма деформации – от зернограничного проскальзывания к Наиболее дислокационному. вероятным механизмом при низких представляется зернограничное проскальзывание. температурах образом, задавая размер зерна и температуру испытания можно рассчитать напряжение течения на определенной стадии процесса деформации. атомном Моделирование уровне раскрывает связи структурных особенностей материалов с их механическими свойствами, позволяет предсказать и объяснить экспериментальные данные и дает новую почву для развития теоретических знаний о материи.

Регистрационная форма

тегнетрационная форма	
Фамилия, имя, отчество	Борисова Мария Захаровна
Ученая степень	-
Учреждение, должность	Институт физико-технических проблем Севера
	СО РАН, ведущий инженер
Фамилия, имя, отчество	Яковлева Софья Петровна
Ученая степень	к.т.н.
Учреждение, должность	Институт физико-технических проблем Севера
	СО РАН, руководитель отдела
E-mail	borisova_maria@yahoo.de
Название доклада	Компьютерное моделирование на атомном
	уровне нанокристаллических металлов.
Название направления	Компьютерное моделирование в науке и
	технике
Оплата целевого взноса	
участника конференции	
(сумма, номер платежного	
документа, дата оплаты)	