Биотестирование качества воды р.Протвы

Г.Н.Верушкина, Е.И.Егорова

Обнинский государственный технический университет атомной энергетики, Россия, bioeco@iate.obninsk.ru

На основе разработанной на кафедре биологии ИАТЭ методологии биоиндикационных исследований антропогенно загрязненных территорий проведен анализ экологического состояния воды в р.Протве в рекреационной зоне г.Обнинска.

Среди огромного множества методов биологического мониторинга не достаточное внимание уделяется физиологическому подходу. Среди физиологических тестов поведенческие параметры, как показали наши исследования, особенно чувствительны к изменению среды. Даже при 100-процентной выживаемости тестируемого гидробионта мы наблюдали изменения в поведенческих реакциях, которые достоверно регистрировались нами разными методами.

Среди существующих методов оценки поведенческой реакции живых организмов для данного исследования мы выбрали спонтанную двигательную активность (СДА) инфузории спиростомы. СДА является эволюционно-обусловленной формой поведения эукариот и универсальной для беспозвоночных гидробионтов.

В качестве стандартного тест, использующегося в экотоксикологических исследованиях, мы выбрали тест по выживаемости дафний (Международные стандарты ИСО 14000). Кроме того, дафнии отчетливо изменяли свое поведение в тестируемой нами воде. По усиливающимся отклонениям в поведении мы смогли выделить разные зоны загрязнения и оценить удаленность участков от источника возможного загрязнения.

Метод биотестирования на Chlorella vulgaris также включен в Международные стандарты ИСО 14000. В своей работе мы оценивали состояние планктонных водорослей в тестируемой воде по изменению биомассы, полученной на основе анализа концентрации хлорофилла *a*.

Интересным в плане использования в биотестировании оказался поведенческий тест на планариях. Если в среде присутствовали органические вещества в повышенных количествах, то планарии перемещались со дна сосуда с тестируемой водой на стенки. Мы регистрировали скорость передвижения, время нахождения в темной и светлой зоне в тестируемой нами водной среде.

Сопоставляя полученные данные по четырем показателям, мы смогли построить сводную таблицу классов качества воды (табл.1). В таблицу мы включили так же показатели, которые используются на кафедре биологии ИАТЭ в биоиндикационной практике.

Таблина 1

					_	
Классы качества	1	2	3	4	5	6
Показатели						
Прирост биомассы фи-	предельно	чистая	умеренно загряз-	загрязнённая	грязная	
топланктона, Мг/л	чистая		ненная	1	1	
Tollstall KTolla, 1411/51	merun		поппал			
Биотический индекс	очень чистая	чистая	умеренно загряз-	загрязнённая	грязная	очень грязная
Вудивисса			ненная	1	1	
311				. 1	_	
Сапробность по Пантле	катаробные	олигосапробные	Бета- мезосапроб-	Альфа- мезоса-	полисапробные	
и Букку			ные	пробные		
D1 ×						
Выживаемость дафний		чистая	слабое загрязне-	среднее загряз-	сильное загрязнение	
			ние	нение		
Поведение дафний		чистая	слабое загрязне-	умеренное за-	сильное загрязнение	
			ние	грязнение	•	
СДА спиростом		чистая	слабое загрязне-	умеренное за-	сильное загрязнение	
P			ние	грязнение	,	
Индикаторы- макрофиты		Крайне слабое	слабое загрязне-	умеренное за-	сильное загрязнение	Оч. сильное
1 1		загрязнение	ние	грязнение	1	загрязнение

Анализируя результаты биоиндикационных исследований мы выделили зоны повышенного антропогенного воздействия на гидробионтов р.Протвы в районе г.Обнинска. Особенно сильно загрязнены участки реки в районе промканализационных сбросов предприятий. По двум показателям здесь регистрируется сильное загрязнение, по двум другим - умеренное. Отмечено сильное загрязнение на участке до плотины. Возможно, здесь скапливается большое количество органического вещества, так как именно в этой точке наблюдается значительно превышение биомассы фи-

топланктона. Вода в р.Протве характеризуется в целом умеренным загрязнением. Однако, водоем, характеризующийся в рекреационной зоне города как полисапробный, вниз по течению становится β -мезосапробным, а в районе промканализационного сброса предприятия α -мезосапробным. Лишь через 1-1,5 км вниз по течению можно говорить о самоочищении водоема.

Нами проведен химический анализ воды в исследуемом водоеме по приоритетным загрязняющим веществам. Также мы оценили, что вода в реке имеет рН около 7, что характерно для данной геоклиматической зоны. Однако в точке пробоотбора, где расположен промканализационный сброс, рН снижен до 5. При этом на указанном участке обнаружено повышение концентрации Na⁺ в 100 раз. Сравнивая с данными прошлых лет, мы отметили, что эти показатели значительно изменились. По-прежнему достоверно превышение ПДК по Fe³⁺. В точке промканализационного сброса предприятия зарегистрировано достоверное превышение ПДК по Zn²⁺. Нами проведен гидрохимический анализ уровня загрязнения воды по совокупности находящихся в ней загрязняющих веществ и частоты их обнаружения. Мы рассчитали баллы кратности превышения ПДК на основе фактической концентрации всех определенных нами химических токсикантов. По величине комбинаторного индекса установили класс загрязненности воды в исследуемом водоеме. Таким образом, у нас появилась возможность провести сопоставление данных химического анализа за несколько лет с результатами биологического мониторинга.