О возможности прогнозирования селективности газов для непористых полимерных мембран Халиков Р.М., Козлов Г.В.

Башкирский государственный педагогический университет

Ранее были получены уравнения для расчета коэффициентов растворимости σ и диффузии D для непористых полимерных мембран в рамках фрактальной модели процессов газопереноса:

$$\sigma = \sigma_0 \left(S_M^{3\phi} \right)^{D_f/2} \left(\frac{\varepsilon}{k} \right)_{3\phi}, \tag{1}$$

$$D = D_0' f_c \left(\frac{d_h}{d_M^{3\phi}} \right)^{2(D_n - d_s)/d_s}, \tag{2}$$

где σ_0' и D_0' - константы, $S_M^{9\phi}$ и $d_M^{9\phi}$ - эффективные площадь поперечного сечения и диаметр молекулы газа-пенетранта, соответственно, D_f — размерность областей локализации избыточной энергии, $(\varepsilon/k)_{3\phi}$ — эффективная силовая постоянная потенциала Ленарда-Джонса, рассчитанная для взаимодействий газ-газ, f_c — относительный флуктуационный свободный объем полимера, d_h — диаметр микрополости этого объема, D_n — размерность структуры полимера, контролирующая процессы газопереноса, в качестве которой может выступить либо D_f , либо фрактальная размерность структуры полимера.

Коэффициент газопроницаемости полимера P может быть выражен следующей простой формулой:

$$P = \sigma D, \tag{3}$$

а коэффициент селективности двух газов i и k α_{ik} на полимерной мембране определяется так:

$$\alpha_{ik} = \frac{P_i}{P_k} \,. \tag{4}$$

Сочетание уравнений (1)-(4) позволяет получить следующее общее соотношение для определения α_{ik} в рамках фрактальной модели:

$$\alpha_{ik} = \left(\frac{d_{M_i}^{3\phi}}{d_{M_k}^{3\phi}}\right)^{D_f} \frac{\left(\epsilon/k\right)_{3\phi_i} \left(d_h/d_{M_k}^{3\phi}\right)^{2(D_n - d_s)/d_s}}{\left(\epsilon/k\right)_{3\phi_k} \left(d_h/d_{M_i}^{3\phi}\right)^{2(D_n - d_s)/d_s}},\tag{5}$$

где показатели в последнем множителе правой части уравнения (5) записаны в таком виде потому, что в общем случае для одной и той же полимерной мембраны величины D_n могут быть разными для различных газов i и k в зависимости от величины $d_M^{3\phi}$.

Цель настоящего сообщения – показать принципиальную применимость уравнения (5) для прогнозирования величины α_{ik} (селективности мембраны) на примере 4 полимеров и серии углеводородов C_1 - C_4 .

Использованы литературные данные для четырех полимеров: аморфно-кристаллического полиэтилена (ПЭ) со степенью кристалличности 0,57, стеклообразного аморфного поливинилтриметилсилана (ПВТМС) и сшитых каучуков полиизопрена (ПИ) и полидиметилсилоксана (ПДМС). Величины α_{ik} получены для них как отношение P_i/P_k , где в качестве P_k использована величина P для метана (СН₄), а в качестве P_i – величины P для 11 остальных углеводородов C_1 - C_4 . Величины $d_M^{3\phi}$ и (ε/k) $_{3\phi}$ взяты из литературных источников. Значения d_f приняты равными: 2,77 для ПЭ, 2,83 для ПВТМС и 2,90 для ПИ и ПДМС. Величина d_s для линейных ПЭ и ПВТМС принята равной 1,0, а для сшитых ПИ и ПДМС – равной 1,33.

Ранее было показано, что процессы переноса углеводородов в рассматриваемых полимерах нужно исследовать в рамках мультифрактального формализма, т.е., размерность D_f не является постоянной, как в случае монофрактального представления, а зависит от масштаба измерения (в данном случае $d_M^{3\phi}$). Было получено следующее соотношение между D_f и (ε/k)_{3ϕ}:

$$D_f = 1{,}33 + 0{,}0182 \left(\frac{\varepsilon}{k}\right)_{3d}. \tag{6}$$

Полученный таким образом спектр $D_f(d_M^{3\phi})$ был принят одинаковым для всех четырех полимеров, что, конечно же, является аппроксимацией. Далее, также для всех четырех полимеров было принято $D_n = d_f$.

В таблице 1 приведено сравнение величин коэффициента селективности углеводородов α_{ik} по метану, рассчитанных по уравнению (5) α_{ik}^{meop} и полученных из литературных источников α_{ik}^{num} . Как можно видеть, для всех четырех полимеров получено достаточно хорошее соответствие (среднее расхождение между α_{ik}^{meop} и α_{ik}^{num} для 44 пар составляет 20 %). Этот результат позволяет сделать следующие выводы.

- 1) Предложенная фрактальная модель процессов газопереноса для непористых полимерных мембран является перспективной для компьютерного прогнозирования и моделирования указанных процессов.
- 2) Очевидно, что для повышения точности результатов модели существует несколько способов, изложенных в последующих пунктах.
- 3) Как следует из данных таблицы 1, спектры $D_f(d_M^{3\phi})$ близки, но не одинаковы для рассматриваемых полимеров, что видно по разной погрешности для одного и того же газа, но разных полимеров. Таким образом, требуется точная идентификация спектра $D_f(d_M^{3\phi})$ для каждого полимера.
- 4) Имеющиеся в литературе величины (ε/k) и d_M могут иметь достаточно широкий разброс (для одного и того же газа они могут различаться в 1,5-2,0 раза). Поэтому важно иметь более точные методы оценки эффективных величин этих параметров.
- 5) Указанная точность необходима, поскольку характерной особенностью всех скейлинговых и фрактальных соотношений является степенная зависимость, существенно повышающая погрешность расчета.
- 6) Степень связности структуры полимера, характеризуемая величиной d_s , существенно влияет на величину α_{ik} . Так, увеличение d_s от 1,0 для линейных полимеров до 1,33 для сшитых при прочих равных условиях увеличивает α_{ik} в среднем в 1,5 раза. Поэтому следует использовать точную величину этой размерности.

Таблица 1. Размерности D_f , сравнение α_{ik}^{meop} и литературных α_{ik}^{num} величин коэффициента селективности и их расхождение Δ для 11 углеводородов C_1 - C_4 на примере ПЭ, ПИ, ПДМС и ПВТМС.

Угле-		ЕП			ПИ			ПДМС			ПВТМС		
водо- род	D_f	$lpha_{ik}^{meop}$	$lpha_{ik}^{\scriptscriptstyle ar{n}um}$	Δ, %	$lpha_{ik}^{meop}$	$lpha_{ik}^{\scriptscriptstyle \scriptstyle \scriptstyle$	Δ, %	$lpha_{ik}^{meop}$	$lpha_{ik}^{\scriptscriptstyle num}$	Δ, %	$lpha_{ik}^{meop}$	$lpha_{ik}^{\scriptscriptstyle \scriptstyle \scriptstyle$	Δ, %
C_2H_6	5,88	2,6	2,4	7,7	3,5	2,9	17,1	3,3	3,9	16,5	2,8	3,0	6,7
C_3H_8	5,64	4,2	3,3	21,4	6,6	4,6	30,3	6,6	8,0	17,5	3,7	4,6	19,6
C_4H_{10}	6,12	9,4	9,6	1,7	15,2	14,4	5,3	17,9	24,8	27,8	12,9	14,4	10,4
C_2H_4	5,43	1,9	2,0	5,0	2,3	2,3	-	2,3	2,8	17,8	2,3	2,3	-
C_3H_6	6,68	5,5	4,8	12,7	8,2	6,0	26,8	8,2	8,6	4,6	6,2	6,0	3,3
C_4H_8-1	6,24	8,5	8,5	1	15,1	12,3	18,0	11,5	21,3	46,0	15,1	12,3	18,0
C_2H_2	5,39	1,8	2,6	30,8	2,2	3,0	26,7	2,2	3,3	33,0	1,9	3,0	36,7
$C_3H_4(M)$	7,17	7,2	12,2	41,0	10,8	16,0	32,5	10,8	19,8	45,5	8,2	16,0	48,8
$C_4H_6(3)$	7,88	17,4	18,5	6,0	29,9	25,6	14,4	30,0	35,5	15,4	14,6	30,0	51,3
$C_3H_4(a)$	7,45	14,6	18,1	19,3	25,9	23,7	8,5	26,0	28,2	7,8	21,2	23,7	10,5
$C_4H_6(6)$	7,28	13,8	11,5	16,5	24,9	15,8	36,5	25,0	19,8	20,8	25,0	15,2	39,2